Фоторецепторные клетки сетчатки глаза это: Фоторецептор — Википедия – Фоторецепторные клетки сетчатки глаза — Традиция

Содержание

Фоторецепторные клетки сетчатки глаза — Традиция

Функциональные части палочек и колбочек, которые являются двумя из трех типов светочувствительных клеток в сетчатке глаза.
*NeuroLex ID sao1233810115 [1] Рис. Б. Восьмиугольная симметрия присутствует на сетчатке глаза в 7‒8° (степенях) оригинальности, где статистически плотность палочек сначала достаточна, чтобы полностью окружить каждое уменьшающееся число колбочек (нано-антена — 1колбочка, окружённая 8 палочками). В зонах сетчатки глаза углом менее 7‒8° (степеней) оригинальности, где статистически плотность палочек не достаточна, чтобы полностью окружить большую плотность числа колбочек (нано-антена — то 1колбочка, окружённая шестью палочками).(Джеральд К.Хат)[2]

Фоторецепторные клетки сетчатки глаза или фоторецепторные клетки нейронов — специализированный тип нейронов в сетчатке глаза, способный к фототрансдукци зрительного сигнала. Важное биологическое значение фоторецепторов состоит в том, что они преобразуют свет (версия Миг) (видимое электромагнитное излучение) в сигналы, которые могут стимулировать биологические процессы. Боле конкретнее, это — способность фоторецепторных белков в клетке поглощать фотоны, вызывая в клетке потенциал в том числе и мембранный потенциал.

[3] (См. также Фотохимические реакции).

Фоторецепторы содержатся:

  • Во внешнем зернистом слое ONL (cм. рис.С) фокальной поверхности сетчатки — экстерорецепторы колбочки и палочки;
  • В ганглиозном слое сетчатки GC — фоторецепторы ipRGC.

Экстерорецепторы колбочки и палочки отвечают гиперполяризациейГиперполяризация — увеличение разности потенциалов между наружной и внутренней сторонами биологической мембраны в возбудимых тканях. (а не деполяризациейДеполяризация (клетки) — снижение существующей в покое разности потенциалов (так называемого потенциала покоя) между внутренней и наружной сторонами клеточной мембраны, как другие нейроны) в ответ на адекватный этим рецепторам сигнал — свет (версия Миг). Экстерорецепторы (колбочки) размещаются в сетчатке глаза в центральной ямке фовеа очень плотно, в виде шестиугольников (гексагональная упаковка). Это экстерорецепторы колбочки M/L (зелёные, красные) расположены в зоне сетчатки глаза в центральной ямке фовея даметром 0,2-0,4 мм, с размерами 2,3 мкм, с расстоянием между центрами 2,5мкм, с углом зрения 30 секунд. Здесь палочек нет).

[4],[5][6][7][8].

Восьмиугольная же симметрия присутствует на периферийной части центральной ямки сетчатке глаза с углом в 7‒8° (степенях оригинальности), где статистически плотность палочек сначала достаточна, чтобы полностью окружить каждое уменьшающееся число колбочек (нано-антена — 1колбочка, окружённая восьмью палочками).(Джеральд К.Хат)[9]

Два классических вида фоторецепторных клеток экстерорецепторов палочек и колбочек сетчатки глаза, каждый из которых на базе полученной информации от воздействия на них лучей света способен сформировать представление визуального мира при зрении. В данном случае в зрении участвуют внешние (от экстеро) доли мембран колбочек и палочек. Откуда они получили название Экстерорецепторы сетчатки глаза (версия Миг). Второй класс светочувствительных клеток, например, Глазки Гессе — светочувствительные клетки, которые как бы погружены в чашеобразную пигментную клетку. Они способны улавливать только направление и интенсивность света. У них проходят биохимические процессы и они поддерживают фототрансдукцию светового биосигнала и относятся к фоторецепторам

[10]. Третий класс фоторецепторных клеток сетчатки был открыт в течение 1990-х годов:[11] в числе светочувствительных нервных клеток сетчатки глаза. Это фоточувствительные клетки ганглиозного слоя сетчатки (фоторецепторы) клетки ганглиозного слоя сетчатки глаза ipRGC. Эти фоточувствительные клетки сетчатки глаза (фоторецепторы) напрямую не участвуют в зрении, но поддерживают циркадные ритмы и зрачковый рефлекс, т.е. косвенно участвуя в зрительном процессе.

Виды фоторецепторных клеток[править]

Фоторецепторы сетчатки глаза[править]

Фоторецепторы низших беспозвоночных животных[править]

Схематическое изображение анатомии ланцетника: 1. Мозговой пузырёк.(Примитивная система «зрения» и координации движений.) 2. Хорда. 3. Нервная трубка.[12]

Основные функциональные различия между колбочками и палочками[править]

Существуют основные функциональные различия между колбочками и палочками сетчатки глаза. Палочки чрезвычайно чувствительны и могут отреагировать всего лишь на 6 фотонов.

[13] При очень низких уровнях освещенности, визуальное зрение основывается исключительно на сигналы такого рода. Это объясняет, почему цвета не видны на низких уровнях освещенности: только один тип фоторецепторных клеток (палочек) является активным.

Колбочки требуют много света значительно яркого (т.е., большего числа фотонов) в целях получения биосигнала. У человека есть три различных разновидностей колбочек, отличающихся видом ответа на разные длины волн света. Формирование цвета в зрительных отделах коры исчисляется на базе трех полученных, отчетливых биосигналов RGB, выделяемых оппонентно в сетчатке глаза.[14] Работа трёх типов колбочек выливается (грубо говоря) в выделении коротких, средних и длинных волн светового луча — КЗС. Следует обратить внимание, что, благодаря (принципу univariance)

[15][16], «стрельба» (выдача сигнала) из клетки зависит только от количества фотонов, поглощенных колбочкой. Различные ответы трёх типов колбочек определяют вероятность, что их фоторецепторные клетки белков будут поглощать фотоны разных длин волн. Так, например, L колбочки содержат фоторецепторные белки, которые более легко поглощают длинные волны света (т.е., более «красный» свет). Свет с меньшей длиной волны может производить один и тот же ответ, но он должен быть намного ярче, чтобы сделать это. Т.е. биосигналы выделяются на основе оппонентного отбора базовых лучей света КЗС самых ярких.

В своей лекции Уильям Альберт Хью Rushton [17] на тему пигменты и сигналы в цветовом зрении заявил так: Выход рецепторов зависит от поимки квантов, но не от того, что бы кванты поймали рецептор.

Это означает, что один и тот же зрительный рецептор клеток сетчатки глаза может быть увлеченным различными сочетаниями длины волны и интенсивности света, так, что мозг может не знать цвет оптического изображения на сетчатке глаза. Т.е. на рецепторном уровне экстерорецепторами колбочками оппонентно отбираются и выделяются самые яркие лучи КЗС, сфокусированных на них лучей света предметных точек, которые в виде биосигналов отправляются в мозг, где происходит создание и субъективное ощущение цветного оптического изображения. (См. также Цветное зрение (версия Миг)).

Человеческая сетчатка содержит около 120 миллионов палочек и 6 миллионов колбочек. Количество и соотношение палочек и колбочек варьируется у различных видов в зависимости от того животного, в первую очередь, от образа того образа жизни — дневного или ночного, который они ведут. Некоторые совы, такие как «неясыть»,[Owl Eyesight» at owls.org] имеют огромное число палочек в сетчатке глаза. В зрительной системе человека насчитывается также около 1,5 млн. ганглиозных клеток ipRGC и от 1 до 2% из них фоточувствительных (фоторецепторов).

Здесь описаны фоторецепторы позвоночных животных. Фоторецепторы беспозвоночных в таких организмах, как насекомые и моллюски различны как по своей морфологической организации, так и по биохимическим механизмам, лежащих в их основе.[18].

Мозаика экстерорецепторов сетчатки глаза человека[править]

Здесь рассматривается отдельно мозаика каждого из различных типов экстерорецепторов колбочек и палочек сетчатки глаза. Существует два принципиально разных типа экстерорецепторов в нашем глазу — это колбочки и палочки. Есть около 5 миллионов колбочек и 100 миллионов палочек в каждом глазу. Позиции (мозаика) этих двух типов фоторецепторов во многом отличаются по всей сетчатке. Рисунок 3.1 показывает, как относительная плотность экстерорецепторов колбочек и палочек различается на сетчатке.

Рис.3.1. Распределение экстерорецепторов палочек и колбочек по сетчатке глаза человека с углами по отношению к центральной ямке фовеа в градусах. Показана работа колбочек красных, зелёных без окружения палочек (в центральной ямке — фовеальной зоне 0,2мм c шириной колбочки в градусах угла зрения \(\phi\), примерно, равное 0,0084 градусов, что примерно составляет угол в 30 секунд между центрами двух колбочек M,L середины базовой полосы (550 нм) контрольной точки в центральной ямке фовеа), работа колбочек-S (синих) на периферии ямки фовеа в пределах окружения 8 палочками в зоне пояса с радиусом более 0,13 мм, в пределах центрального угла 7-8° (в зоне базового отрезка 400-700 нм с длиной волны синего луча более 498 нм).
[19]
[20][21]

Рисунок 3.1: Распределение палочек и колбочек photorceptors по сетчатке глаза человека. (А) плотность рецепторов показана в градусах угла зрения по отношению к положению ямки для левого глаза. (Б) Рецепторы колбочек сосредоточены в центральной ямке. Палочки (стержненвые фоторецепторы) отсутствуют в ямке и их высокая плотность достигает от 10 до 20 градусов в периферийных зонах ямки. В человеческой ямке фовеа имеется около 50000 колбочек. В каждом глазу здорового есть область на сетчатке, которая близко расположена к ямке фовея, она не чувствительна к свету — оптический диск. Здесь в зоне слепого пятна (оптического диска) нервные волокна от рецепторов собираются поверх сетчатки в зрительный нерв, который проходит сквозь сетчатку на другую её сторону и потому в этом месте отсутствуют световые рецепторы. Т.е. аксоны Ax (см. рис. B) ганглиозных клеток

G и кровеносные сосуды (см. рис. B) имеют выход и вход из сетчатки через оптический диск (Blindspot) (cм. рис. 3.1, 1).

Палочки инициируют зрение при низких уровнях освещенности, вызванное скотопическими легкими уровнями, в то время как колбочки инициируют видение при более высоких, фотопических уровнях освещенности. Диапазон интенсивностей, в которой оба экстерорецептора палочки и колбочки могут инициировать видение называется мезопическими уровнями интенсивности. В большинстве длин волн света, колбочки менее чувствительны к свету, чем палочки. Это различие чувствительности сочетается с тем, что нет никаких палочек в ямке, и объясняет, почему мы не можем видеть очень тусклые источники в виде слабого света звезд, это когда мы стремимся разобраться почему лучи света звезд попадая прямо на ямки и мы их не видим. Эти источники являются слишком тусклым, чтобы быть видимыми через все колбочки ямки. Тусклый источник становится видимым только тогда, когда он находится на периферии и может быть обнаружен с помощью палочек. Палочки очень чувствительные фотодетекторы: они генерируют фототок при поглощении одного фотона света (Хехт и др, 1942; Schwartz, 1978; Бэйлор др 1987..).

[22]

Длина волны света и выделение экстерорецепторами сетчатки базовых биосигналов[править]

Рис.14a. Для трёх разновидностей колбочек (cones) дан принцип так называемого трехцветного дневного видения (трихроматиз), который имеется у большинства людей и приматов. Т.е. к длинным волнам чувствительны L-колбочки (красный цвет), как известно они максимально чувствителен к длинам волн максимума вокруг 560 нм, к средним волнм чувствительны M-колбочки (зелёный цвет) с пиком вокруг 530нм и к коротким волнам S-колбочки (синий цвет) с пиком-420 нм. Палочки — 496нм (rod) даны точечной кривой, т.к. в цветном зрении они не участвуют.
[23]
Схема спектра основных цветов и их смешения

Работа мембран колбочек и палочек состоит в восприятии пучков лучей предметной точки изображения c последующим оппонентным отбором основных лучей S,M,L, RGB, выработкой биосигнала (не в цвете, на рецепторном уровне) для передачи его в зрительные отделы головного мозга.

Впервые Исаак Ньютон обнаружил, что белый свет (версия Миг) (Основные,базовые лучи RGB) распадается на составные цвета, когда проходит через дисперсионную призму, и в случае, если эти полосы цветного света проходят через другую призму, то они вернуться, они делают исходный белый луч. Получаемые характерные дисперсионные цвета — от низких до высоких частот: красный цвет, оранжевый цвет, жёлтый цвет, зелёный цвет, голубой цвет, синий цвет, фиолетовый цвет. Достаточные различия в частоте приводят к различию в воспринимаемом оттенке; это заметная разница в длине волны колеблется пиблизительн от 1 нм в сине-зеленых и желтых длинах волн, до 10 нм и более в красной и синей лине волны.

ЦветДиапазон длин волн, нмДиапазон частот, ТГцДиапазон энергии фотонов, эВ
Красный(Базовый)625—740480—4051,68—1,98
Оранжевый590—625510—4801,98—2,10
Жёлтый565—590530—5102,10—2,19
Зелёный(Базовый)500—565600—5302,19—2,48
Голубой485—500620—6002,48—2,56

Фоторецепторные клетки сетчатки глаза | Наука

Функциональные части палочек и колбочек, которые являются двумя из трех типов светочувствительных клеток в сетчатке глаза.
*NeuroLex ID sao1233810115[2]

Рис. Б. Восьмиугольная симметрия присутствует на сетчатке глаза в 7‒8° (степенях) оригинальности, где статистически плотность палочек сначала достаточна, чтобы полностью окружить каждое уменьшающееся число колбочек (нано-антена — 1колбочка, окружённая 8 палочками). В зонах сетчатки глаза углом менее 7‒8° (степеней) оригинальности, где статистически плотность палочек не достаточна, чтобы полностью окружить большую плотность числа колбочек (нано-антена — то 1колбочка, окружённая шестью палочками).(Джеральд К.Хат)[3]

Фоторецепторные клетки сетчатки глаза или фоторецепторные клетки нейронов — специализи

Фоторецептор — Википедия

Фоторецепторы человека

Фоторецепторами являются палочки и колбочки , расположенные в наружном слое сетчатки . Палочки и колбочки сходны по своему строению, они состоят из четырех участков:

1. Наружный сегмент — светочувствительный участок, где световая энергия преобразуется в рецепторный потенциал . Наружный сегмент заполнен мембранными дисками, образованными плазматической мембраной.

В палочках в каждом наружном сегменте содержится 600 — 1000 дисков, которые представляют собой уплощенные мембранные мешочки, уложенные как столбик монет. В колбочках мембранных дисков меньше, они представляют собой складки плазматической мембраны.

2.

Фоторецепторы: строение и функции. Зрительные пигменты. Строение сетчатки

Перетяжка — место, где наружный сегмент почти полностью отделен от внутреннего впячиванием наружной мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой.

3. Внутренний сегмент — область активного метаболизма, заполненная митохондриями, доставляющими энергию для процессов зрения, и полирибосомами, на которых синтезируются белки, участвующие в образовании мембранных дисков и зрительного пигмента.

Здесь же расположено ядро.

4. Синаптическая область — место, где клетка образует синапсы с биполярными клетками. Диффузные биполярные клетки могут образовывать синапсы с несколькими палочками. Это явление, называемое синаптической конвергенцией, уменьшает остроту зрения, но повышает светочувствительность глаза.

Моносинаптические биполярные клетки связывают одну колбочку с одной ганглиозной клеткой, что обеспечивает лучшую по сравнению с палочками остроту зрения. Горизонтальные клетки и амакриновые клетки связывают вместе некоторое число палочек или колбочек.

Благодаря этим клеткам зрительная информация еще до выхода из сетчатки подвергается определенной переработке. Эти клетки участвуют также в латеральном торможении.

Палочек в сетчатке содержится больше, чем колбочек — 120 млн и 6 — 7 млн соответственно.

Тонкие, вытянутые палочки размером 50х3 мкм равномерно распределены по всей сетчатке, кроме центральной ямки, где преобладают удлиненые конические колбочки размером 60х1,5 мкм. Так как в центральной ямке колбочки очень плотно упакованы (150 тыс. на кв.мм), этот участок отличается высокой остротой зрения. Палочки обладают большей чувствительностью к свету и реагируют на более слабое освещение. Палочки содержат только один зрительный пигмент, не могут различать цвета и используются преимущественно в ночном зрении .

Колбочки содержат три зрительных пигмента, что позволяет распознавать цвета, они используются преимущественно при дневном свете. Палочковое зрение отличается меньшей остротой, так как палочки расположены менее плотно и сигналы от них подвергаются конвергенции, но именно это обеспечивает высокую чувствительность, необходимую для ночного зрения.

Палочки содержат светочувствительный пигмент родопсин .

Клетки фоторецепторы:

палочки

колбочки

См. ФОТОРЕЦЕПТОРЫ ЖИВОТНЫХ

See Фоторецептор

Ссылки:

Все ссылки

Фоторецепторы глаза

Описаны три вида фоторецепторов сетчатки глаза: палочки, колбочки и пигментосодержащие ганглиозные клетки.
Рецепторный отдел зрительного анализатора.

Раньше (в течение 200-летней истории исследования глаза) считалось, что рецепторный отдел зрительного анализатора (зрительной сенсорной системы) состоит из фоторецепторов двух типов, но теперь мы должны говорить о трёх типах фоторецепторов сетчатки:

1.Колбочки (их 6-7 млн): им нужна высокая освещенность, они имеют разную чувствительность к разному спектру (длине волны), обеспечивают цветовое зрение, содержат пигмент йодопсин.

2.Палочки (их 110-120 млн): они работают при слабой освещенности, имеют очень высокую чувствительность, но не различают цвета и дают не резкое изображение, содержат пигмент родопсин («зрительный пурпур»).

Эти два типа фоторецепторов расположены в рецепторном слое сетчатки глаза перпендикулярно к направлению светового луча (столбиками).

Причём они, можно сказать, неприлично развёрнуты к свету тылом.
Но относительно недавно в сетчатке были обнаружены фоторецепторы третьего типа:

3. Меланопсинсодержащие ганглиозные клетки сетчатки (МГКС), или же intrinsically photosensitive retinal ganglion cells (ipRGCs): их всего 2% среди ганглиозных клеток сетчатки, они реагируют на освещённость, но не дают зрительных образов, содержат пигмент меланопсин, который сильно отличается от родопсина палочек и йодопсина колбочек.

Нервные пути от этих ганглиозных (ганглионарных) клеток ведут световое возбуждение от сетчатки к гипоталамусу тремя разными путями.

В палочках и колбочках содержатся светочувствительные пигменты. Оба пигмента имеют в своей основе видоизмененный витамин А.

Фоторецепторы: строение и функции. Зрительные пигменты. Строение сетчатки

Если не хватает витамина А, то страдает зрительное восприятие, т.к. не хватает «заготовок» для производства зрительного пигмента.
Палочки имеют максимум поглощения света в области 500 нм.

Колбочки же, в отличие от палочек, бывают трех типов:

1. «Синие» (коротковолновые — S) — 430-470 нм. Их 2% от общего числа колбочек.
2. «Зелёные» (средневолновые — M) – 500-530 нм. Их 32%.
3. «Красные» (длинноволновые — L) – 620-760 нм.

Их 64%.

В каждом виде фоторецепторов используется свой тип зрительного пигмента. Интересно, что в 2000-е годы была обнаружена огромная вариабельность в соотношении красных и зелёных колбочек у разных людей. Стандартное соотношение, приведённое выше, составляет 1:2, но оно может достигать и 1:40, если сравнивать между собой разных людей. И тем не менее мозг компенсирует эти различия, и люди с разным соотношением красных и зелёных колбочек могут одинаково называть цвет с одной длиной волны.

Фотохимические процессы в глазу идут экономно: даже на ярком свету распадается только малая часть пигмента.

В палочках это всего 0,006%. В темноте пигменты восстанавливаются.

Родопсин – пигмент палочек.
Йодопсин – пигмент красных колбочек.

Йодопсин восстанавливается быстрее родопсина в 530 раз, поэтому при недостатке витамина А, в первую очередь страдает зрение палочек, или сумеречное зрение.
Слой фоторецепторов лежит на слое пигментных клеток, которые содержат пигмент фуксин.

Он поглощает свет и обеспечивает чёткость зрительного восприятия.
Отличительная черта фоторецепторов – это не деполяризация, а гиперполяризация в ответ на раздражение.
Можно сказать, что действие света как бы «повреждает» фоторецептор, разрушает его белок, и он перестает нормально работать, впадает в заторможенное состояние.

Фотохимическая «хрупкость» фоторецепторных клеток сетчатки и клеток пигментного эпителия к отоповреждению связана со следующими факторами:

1) присутствием в них эффективно поглощающих свет фотосенсибилизаторов,
2) достаточно высоким парциальным давлением кислорода,
3) наличием легко окисляющихся субстратов, в первую очередь полиненасыщенных жирных кислот в составе фосфолипидов.

Именно поэтому в ходе эволюции органов зрения позвоночных и беспозвоночных сформировалась достаточно надежная система защиты от опасности фотоповреждения (Островский, Федорович, 1987).

Эта система включает постоянное обновление светочувствительных наружных сегментов зрительных клеток, набор антиоксидантов и оптические среды глаза как светофильтры, где ключевую роль играет хрусталик.



Строение фоторецепторов

Основными светочувствительными элементами (рецепторами) являются два вида клеток: одни в виде стебелька — палочки 110-123 млн. (высота 30 мкм, толщина 2мкм), другие более короткие и более толстые —колбочки 6-7 млн. (высота 10мкм, толщина 6-7 мкм). Они распределены в сетчатке неравномерно. Центральная ямка сетчатки(fovea centralis) содержит только колбочки(до 140 тыс. на 1 мм). По направлению к периферии сетчатки их число уменьшается, а число палочек возрастает.

Каждый фоторецептор — палочка или колбочка состоит из чувствительного к действию света наружного сегмента содержащего зрительный пигмент и внутреннего сегмента, который содержит ядро и митохондрии обеспечивающие энергетические процессы в фоторецепторной клетке

Наружный сегмент светочувствительный участок, где световая энергия преобразуется в рецепторный потенциал Электронно-микроскопические исследования выявили, что наружный сегмент заполнен мембранными дисками, образованными плазматической мембраной. В палочках, в каждом наружном сегменте, содержится 600-1000 дисков, которые представляют собой уплощенные мембранные мешочки, уложенные как столбик монет. В колбочках мембранных дисков меньше. Это частично объясняет более высокую чувствительность палочки к свету ( палочку может возбудить всего один квант света, а для активации колбочки требуется больше сотни квантов).

Каждый диск представляет собой двойную мембрану, состоящую из двойного слоя молекул фосфолипидов, между которыми находятся молекулы белка. С молекулами белка связан ретиналь, входящий в состав зрительного пигмента родопсина.

Наружный и внутренний сегменты фоторецепторной клетки разделены мембранами, через которые проходит пучок из 16-18 тонких фибрил. Внутренний сегмент переходит в отросток, с помощью которого фоторецепторная клетка передает возбуждение через синапс на контактирующую с ней биполярную нервную клетку

Наружные сегменты рецепторов обращены к пигментному эпителию, так что свет в начале проходит через 2 слоя нервных клеток и внутренние сегменты рецепторов, а потом достигает пигментного слоя.

Колбочки функционируют в условиях больших освещенностей — обеспечивают  дневное и цветовое зрение, а палочки — отвечают за сумеречное зрение.

Видимый нами спектр электромагнитных излучений заключен между  коротковолновым (длина волны от 400нм) излучением, которое мы называем фиолетовым цветом и длинноволновым излучением (длина волны до 700 нм) называемым красным цветом. В палочках находится особый пигмент- родопсин , (состоит из альдегида витамина А или ретиналя и белка) или зрительный пурпур, максимум спектра, поглощения которого находится в области 500 нанометров. Он ресинтезируется в темноте и выцветает на свету. При недостатке витамина А нарушается сумеречное зрение -«куриная слепота».

В наружных сегментах трех типов колбочек (сине-, зелено- и красно-чувствительных) содержится три типа зрительных пигментов, максимум спектров поглощения которых находится в синей (420 нм), зеленой(531 нм) и красной(558 нм) частях спектра. Красный колбочковый пигмент получил название — «йодопсин». Структура йодопсина близка к родопсину.

Рассмотрим последовательность изменений:

Молекулярная физиология фоторецепции: Внутриклеточные регистрации от колбочек и палочек животных показали, что в темноте вдоль фоторецептора течет темновой ток,  выходящий из внутреннегосегмента и входящий в наружный сегмент. Освещение приводит к блокаде этого тока. Рецепторный потенциал модулирует выделение медиатора (глутамата) в синапсе фоторецептора. Было показано, что в темноте фоторецептор непрерывно выделяет медиатор, который действует деполяризующим образом на мембраны постсинаптических отростков горизонтальных и биполярных клеток.

Палочки и колбочки обладают уникальной среди всех рецепторов электрической активностью, их рецепторные потенциалы при действии света — гиперполяризующие, потенциалы действия под их влиянием не возникают.

{ При поглощении света молекулой зрительного пигмента — родопсина в ней происходит мгновенная изомеризация ее хромофорной группы: 11-цис-ретиналь превращается в транс-ретиналь. Вслед за за фотоизомеризацией ретиналя происходят пространственные изменения в белковой части молекулы: она обесцвечивается и переходит в состояние метородопсина II  В результате этого молекула зрительного пигмента приобретает способность к взаимодействию с другим примембранным белком гуанозин трифосфат(ГТФ) — связывающим белком – трансдуцином (Т).

В комплексе с метародопсином трансдуцин переходит в активное состояние и обменивает связанный с ним в темноте ганозитдифосфат(ГДФ) на (ГТФ). Трансфдуцин + ГТФ, активируют молекулу другого примеммбранного белка — фермента фосфодиэстеразы(ФДЭ). Активированная ФДЭ разрушает несколько тысяч молекул цГМФ.

В результате падает концентрация цГМФ в цитоплазме наружного сегмента рецептора. Это приводит к закрытию ионных каналов в плазматической мембране наружного сегмента, которые были открыты в темноте и через которые внутрь клетки входили Na + и Ca  . Ионные каналы закрываются вследствие того, что падает концентрация цГМФ, которая держала каналы открытыми. В настоящее время выяснено, что поры в рецепторе открываются благодаря цГМФ циклическому гуанозинмонофосфату.

Механизм восстановления исходного темного состояния фоторецептора связан с повышением концентрации цГМФ. (в темновую фазу с участием алкагольдегидрогеназы + НАДФ)

Т.о поглощение света, молекулами фотопигмента приводит к снижению проницаемости для Nа, что сопровождается гиперполяризацией, т.е. возникновением рецепторного потенциала. Гиперполяризационный рецепторный потенциал, возникший на мембране наружного сегмента, распространяется затем вдоль клетки до ее пресинаптического окончания и приводит к уменьшению скорости выделения медиатора — глутамата. Кроме глутамата нейроны сетчатки могут синтезировать и другие нейромедиаторы, такие как ацетилхолин, дофамин, глицин ГАМК.

Фоторецепторы связаны между собой — электрическими(щелевыми) контактами. Эта связь избирательная: палочки связаны с палочками и т.д.

Эти ответы от фоторецепторов сходятся на горизонтальные клетки, которые приводят к деполяризации в соседних колбочках возникает отрицательная обратная связь, которая повышает световой контраст.

На уровне рецепторов происходит торможение и сигнал колбочки перестает отражать число поглощенных фотонов, а несет информацию о цвете, распределении и интенсивности света, падающего на сетчатку в окрестностях рецептора.

Существует 3-и типа нейронов сетчатки — биполярные, горизонтальные и амакриновые клетки. Биполярные клетки непосредственно связывают фоторецепторы с ганглиозными клетками, т.е. осуществляют передачу информации через сетчатку в вертикальном направлении. Горизонтальные и амакриновые клетки передают информацию по горизонтали.

Биполярные клетки занимают в сетчатке стратегическую позицию, поскольку все сигналы, возникающие в рецепторах поступающие к ганглиозным клеткам, должны пройти через них.

Экспериментально было доказано, что биполярные клетки имеют рецептивные поля в которых выделяют центр и переферию (Джон Даулинг- и др. Гарвардская медицинская школа).

Рецептивное поле — совокупность рецепторов, посылающих данному нейрону сигналы через один или большее число синапсов.

Размер рецептивных полей: d=10 мкм или 0,01 мм — вне центральной ямки.

В самой ямке d=2,5мкм (благодаря этому мы способны различать 2-е точки при видимом расстоянии между ними лишь 0,5 угловых минут-2,5мкм — если сравнить, то это монета в 5 копеек на расстоянии около 150 метров)

Начиная с уровня биполярных клеток нейроны зрительной системы дифференцируются на две группы, противоположным образом реагирующие на освещение и затемнение:

1 — клетки, возбуждающиеся при освещении и тормозящиеся при затемнении «on»- нейроны и

  1. — клетки возбуждающиеся при затемнении и тормозящиеся при освещении — » off»- нейроны. Клетка с on-центром разряжается с заметно повышенной частотой.

Если слушать разряды такой клетки через громкоговоритель, то сначала вы услышите спонтанную импульсацию, отдельные случайные щелчки, а затем после включения света, возникает залп импульсов, напоминающий пулеметную очередь. Наоборот в клетках с off-реакцией (при выключении света — залп импульсов) Такое разделение сохраняется на всех уровнях зрительной системы, до коры включительно.

В пределах самой сетчатки передача информации осуществляется безимпульсным путем (распространением и транссинаптической передачей градуальных потенциалов).

В горизонтальных, биполярных и амокриновых клетках переработка сигнала происходит путем медленных изменений мембраны потенциалов(тонический ответ). ПД не генерируется.

Ответы палочек, колбочек и горизонтальных клеток являются гиперполяризующими, а ответы биполярных клеток могут быть как гиперполяризующие, так и деполяризующие. Амакриновые клетки создают деполяризующие потенциалы.

Чтобы понять, почему это так, следует представить себе влияние малого светлого пятна. Рецепторы активны в темноте, а свет, вызывая гиперполяризацию, уменьшает их активность. Если синапс возбуждающий, биполяр будет активироваться в темноте, а инактивироваться на свету; если же синапс тормозной, биполяр в темноте тормозится, а на свету, выключая рецептор, снимает это торможение, т.е биполярная клетка активируется.Т.о. является ли рецепторно-биполярный синапс возбуждающим или тормозным, зависит от выделяемого рецептором медиатора.

В передаче сигналов от биполярных клеток на ганглиозные участвуют горизонтальные клетки которые, передают информацию от фоторецепторов к биполярным клеткам и далее к ганглиозным.

Горизонтальные клетки отвечают на свет гиперполяризацией с ярко выраженной пространственной суммацией.

Горизонтальные клетки не генерируют нервных импульсов, но мембрана обладает нелинейными свойствами, обеспечивающими безимпульсное проведение сигнала без затухания.

Клетки делятся на два типа: В и С. Клетки В-типа, или яркостные, всегда отвечают гиперполяризацией вне зависимости от длины волны света. Клетки С-типа, или хроматические делятся на двух- и трехфазные. Хроматические клетки отвечают или гипер, или деполяризацией в зависимости от длины стимулирующего света.

Двухфазные клетки бывают либо красно — зеленые (деполяризуются красным светом, гиперполяризуются зеленым), либо зелено-синие (деполяризуются зеленым светом, гиперполяризуются синим). Трехфазные клетки деполяризуются зеленым светом, а синий и красный свет вызывает гиперполяризацию мембраны. Амакриновые клетки, регулируют синаптическую передачу на следующем этапе от биполяров к ганглиозным клеткам.

Дендриты амакриновые клеток разветвляются во внутреннем слое, где контактируют с отростками биполяров и дендритами ганглиозных клеток. На амакриновые клетках оканчиваются центробежные волокна, идущие из головного мозга.

Амакриновые клетки генерируют градуальные и импульсные потенциалы (фазный характер ответа). Эти клетки отвечают быстротекущей деполяризацией на включение и выключение света и демонстрируют слабый

пространственный антагонизм между центром и периферией.

Фоторецепторы и фоторецепция | Кинезиолог

Рецепторный отдел зрительного анализатора 

Раньше (в течение 200-летней истории исследования глаза) считалось, что рецепторный отдел зрительного анализатора (зрительной сенсорной системы) состоит из фоторецепторов только двух типов, но теперь мы должны говорить о трёх типах фоторецепторов сетчатки: 1) палочках, 2) колбочках и 3) пигментсодержащих ганглиозных клетках.

Сенсорные рецепторы сетчатки

  1. Колбочки (их 6-7 млн): им нужна высокая освещенность, они имеют разную чувствительность к разному спектру (длине волны), обеспечивают цветовое зрение, содержат пигмент йодопсин.

  2. Палочки (их 110-120 млн): они работают при слабой освещенности, имеют очень высокую чувствительность, но не различают цвета и дают не резкое изображение, содержат пигмент родопсин («зрительный пурпур»).

Эти два типа фоторецепторов расположены в рецепторном слое сетчатки глаза перпендикулярно к направлению светового луча (столбиками). Причём они, можно сказать, неприлично развёрнуты к свету тылом.Но относительно недавно в сетчатке были обнаружены фоторецепторы третьего типа:

      3. Меланопсинсодержащие ганглиозные клетки сетчатки (МГКС), или же intrinsically photosensitive retinal ganglion cells  (ipRGCs): их всего 2% среди ганглиозных клеток сетчатки, они реагируют на освещённость, но не дают зрительных образов, содержат пигмент меланопсин, который сильно отличается от родопсина палочек и йодопсина колбочек. Нервные пути от этих ганглиозных (ганглионарных) клеток ведут световое возбуждение от сетчатки к гипоталамусу тремя разными путями (смотри подробнее тут: Эпифиз ).

 В палочках и колбочках содержатся светочувствительные пигменты. Оба пигмента имеют в своей основе видоизмененный витамин А. Если не хватает витамина А, то страдает зрительное восприятие, т.к. не хватает «заготовок» для производства зрительного пигмента.

Палочки имеют максимум поглощения света в области 500 нм.

Колбочки же, в отличие от палочек, бывают трех типов:

  1. «Синие» (коротковолновые — S) — 430-470 нм. Их 2% от общего числа колбочек.

  2. «Зелёные» (средневолновые — M) – 500-530 нм. Их 32%.

  3. «Красные» (длинноволновые — L) – 620-760 нм. Их 64%.

В каждом виде фоторецепторов используется свой тип зрительного пигмента. Интересно, что в 2000-е годы была обнаружена огромная вариабельность в соотношении красных и зелёных колбочек у разных людей. Стандартное соотношение, приведённое выше, составляет 1:2, но оно может достигать и 1:40, если сравнивать между собой разных людей. И тем не менее мозг компенсирует эти различия, и люди с разным соотношением красных и зелёных колбочек могут одинаково называть цвет с одной длиной волны.

Фотохимические процессы в глазу идут экономно: даже на ярком свету распадается только малая часть пигмента. В палочках это всего 0,006%. В темноте пигменты восстанавливаются.

Родопсин – пигмент палочек.

Йодопсин – пигмент красных колбочек. Йодопсин восстанавливается быстрее родопсина в 530 раз, поэтому при недостатке витамина А, в первую очередь страдает зрение палочек, или сумеречное зрение.

Слой фоторецепторов лежит на слое пигментных клеток, которые содержат пигмент фуксин. Он поглощает свет и обеспечивает чёткость зрительного восприятия.

Отличительная черта фоторецепторов – это не деполяризация, а гиперполяризация в ответ на раздражение.

Можно сказать, что действие света как бы «повреждает» фоторецептор, разрушает его белок, и он перестает нормально работать, впадает в заторможенное состояние. Образно говоря, от воздействия света палочки и колбочки «падают в обморок»!

 Фотохимическая «хрупкость» фоторецепторных клеток сетчатки и клеток пигментного эпителия к фотоповреждению связана со следующими факторами:
1) присутствием в них эффективно поглощающих свет фотосенсибилизаторов,
2) достаточно высоким парциальным давлением кислорода,
3) наличием легко окисляющихся субстратов, в первую очередь полиненасыщенных жирных кислот в составе фосфолипидов.
Именно поэтому в ходе эволюции органов зрения позвоночных и беспозвоночных сформировалась достаточно надежная система защиты от опасности фотоповреждения (Островский, Федорович, 1987). Эта система включает постоянное обновление светочувствительных наружных сегментов зрительных клеток, набор антиоксидантов и оптические среды глаза как светофильтры, где ключевую роль играет хрусталик.

Можно к этому добавить, что фоторецепторные клетки как бы «прячутся» от света, располагаясь как можно дальше от зрачка на периферии глазного яблока и сетчатки, да к тому же разворачиваются к свету не фоточувствительной, а, наоборот, своей тыльной стороной.

Видео: Световые иллюзии

 

Зрительная фототрансдукция фоторецепторов сетчатки глаза — Традиция

Зрительная фототрансдукция или Фототрансдукция в палочках и колбочках — физиологический процесс создания и трансформации биохимических нервных сигналов при формировании оптического изображения в процессе зрения позвоночных животных. Процесс этот начинается от захвата фотонов сетчаткой глаза, и завершается формированием зрительных образов в зрительной коре головного мозга.[1]

Нейроны сечения сетчатки Палочек, Колбочек, ipRGC
  • Поперечное сечение сетчатки.

(Клетки при большом увеличении).

РасположениеСетчатка (версия Миг)
ФункцияЭкстерорецепторы (версия Миг)
МорфрлогияСформированная Колбочка, Палочка и ipRGC
Предсинапсические связиНи одной
Постсинапсические связиБиполярные и горизонталные ячейки
Удостоверение снимкаNeuroLex sao № 1458938856
Fotorezeptori sethatki+.jpg

Фоторецепторные клетки сетчатки глаза или фоторецепторные клетки нейронов — специализированный тип нейронов в сетчатке глаза, способный к фототрансдукци зрительного сигнала. Важное биологическое значение фоторецепторов состоит в том, что они преобразуют свет (версия Миг) (видимое электромагнитное излучение) в сигналы, которые могут стимулировать биологические процессы. Боле конкретнее, это — способность фоторецепторных белков в клетке поглощать фотоны, вызывая в клетке потенциал в том числе и мембранный потенциал.[2] (Cм. также Фотохимические реакции).

Формирование оптического изображение в процессе зрения у позвоночных животных связано с находящимися к сетчатке глаза фоторецепторных клеток — экстерорецепторов колбочек (cone) и палочек (rod). Колбочки и палочки в то же время работают при участии ганглиозных фоторецепторов ipRGC, расположенных в сетчатке вне фокальной поверхности, которые непосредственно не формируют оптическое изображение, но принимают участие в работе колбочек и палочек. Палочки специализированы для «низко-легкого» зрения. Они чрезвычайно чувствительны и могут сигнализировать поглощение одиночных фотонов. Колбочки обеспечивают видения дневного света (иллюстрация 1). Они намного менее чувствительны к свету, чем палочки, но обладают более длительным временным восприятием. Они также обеспечивают цветное зрение благодаря способности колбочек воспринимать сфокусиванные на них лучи света из-за изменчивых фотопигментов у них, чувствительных к различным спектральным лучам (См. Опсины (версия Миг)).

  • Рис. 1. Светлопольные изображения фоторецептора палочки и фоторецепторов колбочки, изолированных от сетчатки саламандры. Фототрансдукция имеет место во внешней доле, в то время как эллипсоид плотно упакован mitochondria. Палочки ответственны за тусклое легкое видение, колбочки для видения яркого света.

Имеются большие достижения в понимании фототрансдукции палочки. Начиная с введения электрода всасывания, позволяющего производить запись техники при экспериментах в конце 1970-ых (Baylor и др., 1979a). Фоторецепторы человека, земноводных и относящиеся к млекопитающим (включая примата), могут быть использованы для исследоаний этим методом. Бычья сетчатка, с другой стороны, была любимой при подготовке к тому, чтобы изучить фототрансдукцию биохимиками из-за изобилия доступной ткани. Мышь, однако, стала более популярной моделью животных для исследования в прошлом десятилетии при помощи появившихся планируемых генных методов. Когда это объединено с электрофизиологией, генетика мыши обеспечивает непревзойденную власть в объяснении в естественных условиях функции ключевых белков фототрансдукции, большинство которых было выбито, сверхвыражено или видоизменено в колбочках, приводя к богатому объему информации на принципах, лежащих в основе увеличения, восстановления и адаптации фотоответов палочка/колбочка (Таблица 1, рис. 2,3).

Таблица 1. Список главных белков, вовлеченных в палочке мыши и фототрансдукции колбочки, которые были выбиты, сверхвыражены или mutated1 1) из-за высокого ограничения, но не все генетически проектируемые линии мыши перечислены. Для включенных только перечислены самые существенные фенотипы (в тексте дано более полное описание). 2) Arrestin4 также называют колбочкой-arrestin или X-arrestin (Gurevich и Gurevich, 2006; Никонов и др., 2008) 3) сверхвыражение RGS9‒1 было достигнуто сверхвыражением R9AP, который привел к сверхвыражению всех трех компонентов комплекса ПРОМЕЖУТКА, RGS9‒1, G_5-L и R9AP.

Сначала даётся краткое описание структуры и развития фоторецепторов мыши, сопровождаемых резюме недавних исследований фототрансдукции палочки с акцентом на информацию, подбираемой от образцов мыши. В конце, будет упомянут недавний прогресс в обучающихся колбочках мыши.

Структура и функция палочек и колбочек[править]

Палочки составляют ~97 % фоторецепторов глаза мыши сетчатки глаза, колбочки — остальное (Картер-Доусон и LaVail, 1979). Фоторецепторы мыши подобны фоторецепторам примата в физических измерениях (Стол 2 и иллюстрация 2). Внешняя доля — приблизительно 1.4мкм в диаметре и 24мкм в длине для палочек, и, соответственно, приблизительно 1.2мкм. и 13мкм. для колбочек. Эти величины являются значительно меньшими, чем у фоторецепторов земноводных (иллюстрация 1), которые объясняют давнюю пользу физиологов для исследований последних.

  • Таблица 2. Физические измерения внешней доли палочек мыши и колбочек Саламандра, а фоторецепторы примата включены для сравнения.

Палочки и колбочки имеют четыре первичных структурных/функциональных областей: внешняя доля мембраны, внутренняя доля мембраны, тело ячейки и синаптический терминал. Внешняя доля мембраны связана с внутренней долей через тонкую соединительную ресницу. Внешняя доля является заполненной плотным прозрачным веществом мембранных дисков (иллюстрации 2 и 3), разделённой промежутками в приблизительно в 28 нм. Диски несут визуальный пигмент опсин (разновидность фотопигментов «rhod-opsin» в палочках и разновидность фотопигментов колбочки «con-opsin» в колбочках)[3] и других компонентах трансдукции или как трансмембранные или периферийные мембранные белки (иллюстрация 3). Зрительный фотопигмент — самый насыщенный белок во внешней доле (мембране). Важность визуального пигмента как главного структурного компонента демонстрируется у мыши rhodopsin-нокаута, в палочке, где внешние доли мембраны не в состоянии сформироваться (Humphries и др., 1997; Лем и др., 1999). Фоторецепторы палочки у этой мыши — выродившийся сопровождаемый представитель колбочек. Упаковочная плотность молекул пигмента на дисках мембраны необычно однородна поперек различных позвоночных разновидностей, содержашихся на площади ~25000 мм², соответствуя концентрации ~ 3mM (Harosi, 1975). Общее количество молекул пигмента во внешней доле может таким образом быть вычислено примерно от ее объема конверта. Плотный стек дисков очень увеличивает вероятность захвата фотона. Интересное различие между палочками и колбочками — это то, что диски палочки (за исключением возникающих дисков в основе внешней доли мембраны) полностью усвоены и поэтому физически отделены от плазменной мембраны, тогда как диски колбочки остаются свёрнутыми плазменной мембраной. Открытые диски колбочки предлагают намного большую поверхностную область для быстрых потоков веществ между внешностью клетки и интерьером, по типу передачи хромофора для регенерации фотопигмента и быстрой динамики кальция в течение световой лёгкой адаптации или возбуждения волны сигнала — мембранного потенциала.

Fotorezeptori sethatki+.jpg
  • Рис. 2. Низкое усиление изображений палочек и колбочек обезьяны с расширением внешних дисков (мембран) доли.
  • Рис.3. Схематическая диаграмма rhodopsina во внешних дисках (мембран) доли.

Внутренняя доля фоторецепторов содержит endoplasmic сеточку и аппарат Golgi. Это также упаковано mitochondria, близко, смежно с внешней долей (иллюстрации 2 и 3), чтобы обеспечить высокий спрос на метаболическую энергию, связанную с фототрансдукцией. Все белки, предназначенные для внешней доли, должны пройти через узкую зону соединительной ресницы между внешним и внутренними долями.

Синаптический терминал передает световой сигнал к нейронам второго заказа в сетчатке: к биполярным и горизонтальным ячейкм. В темноте есть устойчивый внутренний поток («темный поток») через проводимость катиона на мембране внешней доли (Hagins и др., 1970), деполяризуя палочку или колбочку и поддерживая устойчивый синаптический выпуск глутамата. Свет закрывает эту проводимость катиона («светочувствительная» проводимость, состоя из cGMP-gated каналов) служит, чтобы остановить темный поток и произвести мембранную гиперполяризацию как ответ. Эта гиперполяризация уменьшает или заканчивает тёмный глутаматный выпуск. Сигнал далее обрабатывается другими нейронами в сетчатке прежде, чем передаётся в высшие отделы зрительных центров в мозге.

Завершение фототрансдукции R*[править]

Активизированный rhodopsin (R *) инактивирован двухступенчатым процессом. Сначала, R* — phosphorylated rhodopsin киназой (GRK1), который понижает деятельность R*. Во вторых, белок arrestin (Arr1) связывает с phosphorylated R *, увенчивая его остаточную деятельность (Kuhn и Wilden, 1987; Wilden и др., 1986).

Многократные остатки серина/треонина в C-терминале rhodopsin (шесть в мышах и семь в людях) обеспечивают участки фосфорилирования для GRK1. Пигменты колбочки имеют больше потенциальных участков фосфорилирования в C-терминале, чем rhodopsin. Например, человеческий красный пигмент колбочки имеет 10 таких участков. Даже при том, что биохимические эксперименты первоначально вскрыли, что rhodopsin — преобладающе phosphorylated только в одном остатке серина после легкого подвергания (Ohguro и др., 1995), и последующая регистрация от трансгенных палочек мыши, несущих мутации участка фосфорилирования показала, что восстанавливаемая дезактивация R* требует по крайней мере трех событий фосфорилирования (Mendez и др., 2000). Кроме того, все шесть участков должны быть phosphorylated для нормального снижения ответа, чтобы перейти в другое состояние.

Многократные события фосфорилирования также предложили, что бы находиться в состоянии воспроизводимости ответов палочки на одиночные фотоны (Gibson и др., 2000; Hamer и др., 2003; Mendez и др., 2000). Несмотря на то, что события, произведенные одиночными молекулами являются стохастическими в природе, ответ палочки на одиночный фотон показывает замечательную воспроизводимость в амплитуде и форме (Baylor и др., 1979b; Rieke и Baylor, 1998; Whitlock и Ягненок, 1999). Составляя в среднем по многократным шагам отключения, интегрированная деятельность R* изменяет меньше, чем иначе управляемый единственным шагом. Эта гипотеза поддержана экспериментами, используя трансгенные палочки мыши, несущие мутации участка фосфорилирования (Doan и др., 2006). Авторы показали, что воспроизводимость ответа единственного фотона изменяется по градуируемой и систематической манере с числом, но не идентичностью, участков фосфорилирования. Каждый участок фосфорилирования обеспечивает независимый шаг в родопсин (версия Миг) (rhodopsin) дезактивации и что, все вместе, эти шаги сильно управляют целой жизнью R*.

Намного меньше известно о роли участков фосфорилирования в пигментах колбочек. Единственные в естественных условиях эксперименты, которые были сделаны Кефаловым и др. (Кефалови др., 2003), показывали, что трансгенны

  •  
  • Галактический Колледж
    • Концепция
    • Библиотека
    • Словари
      • Физиология
      • Психология
      • Словарь китайской философии
      • Буддизм
      • Буддизм в Тибете
      • ДАО
      • Синергетика
      • Цитаты — Телекинез
      • Цитаты — Ясновидение
    • Фоторепортажи
    • История
    • Пресса
    • Партнеры
    • Объявления
    • Контакты
  • Клуб Бронникова
    • Обучение
    • Методика
    • Применение метода
      • Наука
      • Медицина
      • Реабилитация
    • Литература
    • Фоторепортажи
    • Теоретическая база 1 ступени (Коваленко Ю.)
    • Организации
  • Китай Клуб
    • Концепция
    • Обучение
    • Тайцзицюань
      • Обучение
      • Что такое «Ци»
      • Истоки тайцзицюань
      • Об ощущениях ци в тайцзицюань
      • Лю Гуанлай
    • Цигун
    • Ушу
    • Лаборатория фэншуй
      • Програма занятий
      • Знаки фэншуй
    • Организации
    • Китайская философия
    • Стратагемы
    • Лингвистика
    • Верования
    • Фоторепортажи
    • Исскуства
    • Полезные ссылки
  • Интерактив Лаборатория
    • Концепция
    • Транс
    • Технологии
    • Эксперт-операторство
    • Ясновидение
    • Физвокализ
    • Матрица
  • Лаборатория пространств
    • Концепция
    • Человек
    • Общество
    • Кибернетика
    • Философия
    • Физика
    • Непознанное
  • Адвокат Клуб
    • Концепция
    • Сектоведы
    • Наука
    • Революция
    • Махинации
    • Фалуньгун
    • Политэкономия
    • Политтехнологии
    • Права человека
    • Тибет
  • Новости
    • Все новости
    • Новости Метода Бронникова
    • Новости Китай Клуба
    • Новости Культуры
    • Новости Науки
    • Новости Партнеров
  • Общение
    • Форум
    • Рассылка

Вход

ВХІД Реєстрація

Отправить ответ

avatar
  Подписаться  
Уведомление о