Простые глаза и сложные глаза – Значение словосочетания СЛОЖНЫЙ ГЛАЗ. Что такое СЛОЖНЫЙ ГЛАЗ?

Содержание

Зрение насекомых | справочник Пестициды.ru

Глаза насекомых

Глаза насекомых


1 – сложные глаза, 2 – простые глазки, 3 – стеммы

Использовано изображение:[8][9][10]

Разновидности строения органов зрения

У насекомых глаза могут быть представлены в трех разновидностях:

Они имеют различное строение и неодинаковую способность видеть.

Сложные глазавстречаются у большинства насекомых, причем, чем более высокоразвитыми являются последние, тем лучше у них обычно развиты органы зрения. Сложные глаза еще называют фасеточными, потому что их наружная поверхность представлена совокупностью расположенных рядом друг с другом линз – фасеток.[5]

Омматидий

Омматидий


А(слева) – аппозиционный омматидий,

B (справа) – суперпозиционный омматидий

1 – аксоны зрительных клеток, 2 – ретинулярные клетки,

3 – роговица, 4 – кристаллический конус,

5 – пигментные клетки, 6 – световод, 7 – рабдом

Использовано изображение:[6]

 

Сложный глаз состоит из различного, как правило, большого количества отдельных структурных единиц – омматидиев. Омматидии включают в себя ряд структур, обеспечивающих проведение, преломление света (фасетка, корнеагенные клетки, хрустальный конус) и восприятие зрительных сигналов (ретинальные клетки, рабдом, нервные клетки). Кроме того, у каждого омматидия имеется аппарат пигментной изоляции, благодаря чему, он оказывается полностью или частично защищен от попадания боковых лучей.[5]

Особенности строения омматидия – это факторы, определяющие особенности зрения у обладателей сложных фасеточных глаз. Выделяют омматидии двух основных разновидностей, в связи с чем, различают насекомых с аппозиционным и суперпозиционным строением глаз.

каждый омматидий изолирован в своей верхней части при помощи пигмента от соседних омматидиев. Таким образом, каждая структурная единица глаза работает отдельно от всех остальных, воспринимая только «свою» часть внешнего пространства. Общая картинка складывается в мозге насекомого как бы из множества кусочков мозаики. омматидии лишь частично, хоть и по всей длине, защищены от боковых лучей: они полупроницаемы. С одной стороны, это мешает насекомым при интенсивном освещении, с другой – помогает им лучше видеть в сумерках.[5][3](фото)

Таким образом, первая разновидность строения глаз характерна дневным насекомым, вторая – ночным. Дополнительно еще выделяют такую разновидность, как нейросуперпозиционный глаз, которые встречается только у некоторых Двукрылых.

[2]

Схема строения простого глазка

Схема строения простого глазка


1 –  корнеагенные клетки, 2 – кутикула,

3 – ретинальные клетки, 4 – рабдом, 5 – пигментные клетки,

6 – волокна зрительного нерва

Использовано изображение:[7]

Простые глазки – это мелкие органы зрения, которые имеются у некоторых имаго и располагаются обычно на верхней части головы. Обычно представлены в количестве трех, при этом, один лежит чуть впереди, а еще два – сзади и сбоку от переднего. В их составе нет омматидия, строение простых глазков значительно упрощено. Снаружи располагается роговица, состоящая из корнеагенных клеток, глубже находится световоспринимающий аппарат из ретинальных (чувствительных) клеток, еще ниже лежат пигментные клетки, которые переходят в волокна зрительного нерва.

[4](фото)

Из всех разновидностей глаз насекомых простые глазки обладают наиболее слабой способностью к зрению. По некоторым данным, они вообще не выполняют зрительной функции, и лишь отвечают за улучшение функции сложных глаз. Это, в частности, доказывается тем, что у насекомых практически не бывает простых глазков в отсутствии сложных. Кроме того, при закрашивании фасеточных глаз насекомые перестают ориентироваться в пространстве, даже если у них имеются хорошо выраженные простые глазки.[1]

Схема строения стеммы

Схема строения стеммы


1 – роговица, 2 – хрустальный конус,

3 – пигментные клетки, 4 – рабдом,

5 — ретинальные клетки, 6 – волокна зрительного нерва

Использовано изображение:[7]

Стеммы, или личиночные глазки – это органы зрения, имеющиеся у личинок насекомых с полным превращением. Во время стадии куколки они «превращаются» в сложные глаза. Выполняют зрительную функцию, но, в связи с упрощенной структурой, видят относительно слабо. Для улучшения зрения личиночные глазки нередко представлены у личинок в количестве нескольких штук.[1]

Строение стемм отличается значительным разнообразием. В одних случаях по своей морфологии они ближе к дорсальным глазкам взрослых насекомых, в других больше напоминают омматидий сложного глаза. Однако, в любом случае, они отличаются и от сложных, и от простых глаз. Одна из наиболее распространенных схем строения личиночных глазков (на

фото – стеммы личинки жука-плавунца) включает в свой состав следующие структуры: роговица (хрусталик), хрустальный конус, рабдом, ретинальные и пигментные клетки.[3][5]

Особенности зрения насекомых

Изучению зрения насекомых посвящено огромное количество научных трудов. Ввиду такого интереса со стороны специалистов, многие особенности работы глаз у Insectaна сегодняшний день достоверно выяснены. Тем не менее, строение органов зрения у этих организмов отличается настолько большим разнообразием, что качество видения, восприятие цвета и объема, различение движущихся и неподвижных предметов, распознавание знакомых визуальных образов и другие свойства зрения колоссальным образом различаются у разных групп насекомых. На это способны повлиять следующие факторы: в сложном глазу – структура омматидиев и их количество, выпуклость, расположение и форма глаз; в простых глазках и стеммах – их число и тонкие черты строения, которые могут быть представлены значительным многообразием вариантов. Лучше всего на сегодня изучено зрение пчел.

[3][5]

Глаза насекомых

Глаза насекомых


Видео демонстрирует разнообразие цвета, формы, расположения, строения разных видов органов зрения у Насекомых и Паукообразных.

В приведенном видео можно оценить значительное богатство морфологических форм органов зрения у насекомых и пауков.

Различие цветов

Способность к цветовосприятию у насекомых очень сильно разнится, но у большинства, по сравнению с человеком, доступный зрению спектр лучей уменьшен с левой стороны (красный, оранжевый) и увеличен с правой (синий, фиолетовый). Например, пчелы воспринимают красный, розовый, оранжевый, желтый и зеленый цвета как различные оттенки желтого и не видят между ними большой разницы. Качественно они отличают друг от друга всего 4 цвета, а, например, бражник – только два: сине-фиолетовую и желто-зеленую группу. Однако бражники способны полноценно воспринимать эти цвета в сумерках, когда для человеческого глаза все уже сливается в плохо различимые оттенки серого и черного.

Определение формы

Насекомые способны различать форму, но это происходит у них совсем не так, как у человека. Насекомые, питающиеся нектаром (бабочки, пчелы), игнорируют нерасчлененные фигуры: овал, круг, квадрат и др., но зато привлекаются расчлененными: радиальными, напоминающими венчики цветков. Чем сложнее форма и игра теней у предмета, тем лучше он ими воспринимается. Кроме того, пчелы испытывают «тягу» к мелким предметам (например, рисункам на бумаге), обращая на них больше внимания, чем на крупные.[5]

Определенную роль в восприятии формы играет движение объекта. Насекомые охотнее садятся на цветы, которые колышутся на ветру, чем на неподвижные. Личинки стрекоз бросаются за движущейся добычей, а самцы бабочек реагируют на летящих самок и плохо видят сидящих. Вероятно, дело в определенной частоте раздражения омматидиев глаз при движении, мелькании и мерцании.

[5]

Узнавание знакомых объектов

Насекомые узнают знакомые объекты не только по цвету и форме, но и по расположению предметов, находящихся вокруг них, так что представление об исключительной примитивности их зрения нельзя назвать верным. Например, Песчаная оса находит вход в норку, ориентируясь по тем предметам, что располагаются вокруг нее (трава, камни). Если же их убрать или изменить их расположение, это может сбить насекомое с толку.[5]

Восприятие расстояния

Эта особенность лучше всего исследована на примере стрекоз, жужелиц и других хищных насекомых.[5]

Возможность определять расстояние обусловлена наличием у высших насекомых бинокулярного зрения, то есть, двух глаз, поля зрения которых частично пересекаются. Особенности строения глаз определяют, насколько велико расстояние, доступное обзору того или иного насекомого. Например, жуки-скакуны реагируют на добычу и набрасываются на нее, когда находятся от объекта на расстоянии 15 см.

[5]

Светокомпасное движение

Многие насекомые двигаются так, что у них постоянно сохраняется один и тот же угол падения света на сетчатку. Таким образом, солнечные лучи являются своеобразным компасом, по которому ориентируется насекомое. По тому же принципу ночные бабочки перемещаются в направлении искусственных источников света.[5]

Близкие статьи

 


Ссылки

Заглавная статья: Cтроение насекомых

Статья составлена с использованием следующих материалов:

Литературные источники:

1.

Бей-Биенко Г.Я. Общая энтомология. — 3-е издание., доп.— М.: Высш.школа, 1980. — 416 с.,ил.

2.

Биологический энциклопедический словарь. М.: Научное издательство «Большая Российская Энциклопедия». – 1995 г. — 863 с.

3.

Захваткин Ю.А., Курс общей энтомологии, Москва, «Колос», 2001 — 376 с.

4.

Росс Г., Росс Ч., Росс Д. Энтомология. — М., Мир, 1985. -572 с.

5.

Шванвич Б.Н. Курс общей энтомологии. — М.Л. Советская наука. 1949.—900 с., ил.

Изображения (переработаны):

6.

Захваткин Ю.А. Курс общей энтомологии. – Москва, «Колос», 2001 — 376 с., Иллюстрации из книги. ©

7.

Шванвич Б.Н. Курс общей энтомологии. — М.Л. Советская наука. 1949.—900 с., ил. Иллюстрации из книги. ©

8.9.10. Свернуть Список всех источников

Сложные или фасеточные глаза | справочник Пестициды.ru

У высших насекомых органы зрения не одинаковы по своему строению. На лбу или темени у них находятся три простых глазка (в середине – дорсальный, по бокам от него – латеральные), а по бокам головы располагаются два сложных фасеточных глаза. Они встречаются у взрослых насекомых, а также у личинок с неполным превращением, и передают в мозг большую часть получаемой визуальной информации.

[3]

Общее строение глаз

Глаза есть у большинства насекомых, и лишь относительно небольшое количество таксонов ими не обладают. К примеру, их нет у некоторых примитивных видов, а также у странствующих муравьев Ection. В большинстве случаев глаза представлены в виде двух отдельных образований, однако, например, у стрекоз они настолько велики, что сходятся в единую структуру на темени.

Внешнее строение глаза насекомого. Фасетка.

Внешнее строение глаза насекомого. Фасетка.


Использовано изображение:[6]

По форме сложные органы зрения чаще близки к округлым, однако в ряде случаев они каплевидные (как у богомола) или почковидные, так как имеют вырезку, на которой «сидит» антенна (как у ивового толстяка Lamia textоr). В некоторых случаях вырезка настолько резкая, что отделяет верхнюю и нижнюю часть глаза друг от друга, из-за чего кажется, что глаз у насекомого не два, а четыре (пример – жук Tetrops praeusta). Иногда особенности формы и размера глаз определяются принадлежностью к тому или иному полу. Так, самцы обычно имеют более развитые глаза, нежели самки, что особенно видно на примере трутней и рабочих пчел. У слепней они соприкасаются в середине головы у самцов и не соприкасаются у самок.[3]

Фасеточные глаза состоят из отдельных структурных единиц, которые называются омматидиями. Роговицы (наружные линзы) омматидиев тесно сближены между собой и при рассматривании глаза с поверхности выглядят как шестигранники. Эти шестигранники носят название фасеток, из-за чего сложные глаза также известны как фасеточные.[2](фото)

В нижней части, прилежащей к голове, каждый глаз ограничен базальной, или ситовидной мембраной. В ней, согласно количеству омматидиев, имеется множество отверстий, через которые проходят зрительные нервные волокна. Через них же в глаз входят трахеи, пронизывающие его и проходящие между омматидиями. На месте глаза головная капсула образует довольно глубокое впячивание, образуя глазную капсулу, или глазной склерит; он является опорной структурой глаза.[3]

Окраска глаз насекомых

Окраска глаз насекомых


1 – равномерная у мухи; 2 – пятнистая у пчелы-плотника

3 – полосатая у журчалки; 4 – ложный зрачок у стрекозы

Использовано изображение:[9][5][8][7]

Омматидий как структурная единица сложного глаза

В некоторых случаях омматидии сравнивают по строению с дорсальными глазками, однако анатомически они представляются, скорее, более похожими на латеральные. Тем не менее, даже несмотря на это сходство, они имеют ряд индивидуальных особенностей.

Количество омматидиев в глазу насекомого может быть различным, однако в большинстве случаев оно очень велико. Глаз комнатной мухи включает до 4000 структурных единиц, у некоторых бабочек каждый орган зрения объединяет в себе до 17 000 омматидиев, а у стрекоз, отличающихся особенно крупными размерами глаз, количество мелких элементов достигает 28 000. Одновременно, существуют насекомые, у которых их гораздо меньше. К примеру, рабочие муравьи имеют сложные глаза, в которых «всего» 100-600 омматидиев, а у рабочей касты Ponerapunctatissima каждый сложный глаз представлен лишь одним омматидием.[3][2]

Поперечный размер (диаметр) структурных единиц глаза также отличается, однако он, в любом случае, измеряется в микронах. Омматидии майского жука по диаметру равны 20 микрон, американского таракана – 32 микрона.

Зрительные оси омматидиев должны быть примерно перпендикулярны поверхности головы, поэтому, чем большее пространство они занимают, тем более выпуклы глаза насекомых. Однако сильная выпуклость глаз говорит не столько о хорошем зрении, сколько о большом поле обзора, по крайней мере, у дневных видов.[3]

Подробное строение омматидиев довольно сложно и будет рассмотрено на примере типичного аппозиционного глаза (объяснение данного термина в следующем разделе). В структуре каждой единицы фасеточных глаз находится три функциональных комплекса структур, или три аппарата:

  • диоптрический (преломляющий)

Состоит из линз, преломляет и направляет свет.

  • рецепторный (воспринимающий)

Воспринимает и передает зрительную информацию.

  • аппарат пигментной изоляции

Изолирует каждый омматидий от других и придает глазам окраску, которая может быть однородной или неравномерной. Даже в пределах одного органа зрения различные омматидии могут отличаться по строению этого аппарата, количеству и расположению пигмента в нем, поэтому при рассматривании со стороны глаза некоторых насекомых кажутся пятнистыми, полосатыми или даже имеют ложный зрачок.[3](фото)

Строение омматидия

Строение омматидия


1 – роговица, 2 – корнеагенные клетки,

3 — кристаллический  конус, 4 – клетки Земпера,

5 – ретинальные клетки, 6 – зрительная палочка,

7 – побочные пигментные клетки,

8 – ретинальные пигментные клетки,

9 – базальная мембрана

Использовано изображение:[4]

Зрительные аппараты омматидия

состоит следующих частей (снаружи внутрь): (фото)
  • Роговица, или хрусталик – наружная прозрачная двояковыпуклая или плосковыпуклая линза. Представлена измененной кутикулой (1 на (фото)).
  • Корнеагенные клетки – клетки, вырабатывающие вещество роговицы; благодаря им, хрусталик может сменяться на новый, так что при линьке кутикула сбрасывается не только с поверхности тела, но и с глаз. Обычно корнеагенных клеток две, они лежат глубже роговицы (2 на (фото)).[2]
  • Стекловидное тело (кристаллический конус, хрустальный конус) (3 на (фото)) – образование, имеющее конусовидную структуру и обращенное основанием к роговице. Оно играет роль второй преломляющей линзы (собирательной). Состоит из прозрачных клеток или является продуктом секреции особых клеток, лежащих вокруг него (клеток Земпера) (4 на (фото)).[3]
включает еще несколько компонентов омматидия:
  • Ретинальные клетки – вытянутые структуры, которые располагаются ниже кристаллического конуса в виде пучка (5 на (фото)).
  • Зрительная палочка (рабдом) – продолговатое образование, состоящее из продуктов секреции ретинальных клеток и находящееся в центре их пучка. В поперечном срезе рабдом и ретинальные клетки формируют картину «цветка», где рабдом занимает осевое положение, являясь «сердцевинкой», а ретинальные клетки расположены вокруг него, подобно лепесткам (6 на (фото)).
  • Зрительные нервы – нервы, передающие информацию в центральную нервную систему.
изоляции имеет в своем составе 3 образования:
  • Корнеагенные (главные пигментные) клетки: те же самые, которые вырабатывают кутикулу хрусталика. Они заполняются пигментом и изолируют хрусталик от роговиц соседних омматидиев.
  • Побочные пигментные клетки – изолируют каждый омматидий от других на уровне хрустального конуса (7 на (фото)).
  • Ретинальные пигментные клетки – выполняют ту же функцию, но ниже, на уровне расположения ретинальных клеток и зрительной палочки (8 на (фото)).

Таким образом, каждый омматидий в типичном глазе оказывается изолирован на всем протяжении и защищен от попадания на него боковых лучей.[3]

Свечение глаз у ночной бабочки

Свечение глаз у ночной бабочки


Использовано изображение:[10]

Типы глаз

В зависимости от особенностей строения, выделяют три основных морфофункциональных типа глаз.

Его структура была рассмотрена выше как основная. Главная черта строения этого глаза состоит в том, что каждый омматидий в его составе «работает» изолированно. В результате, общая визуальная картина для насекомого состоит из отдельных «кусочков», складывающихся вместе. Такое строение идеально для хорошего освещения, поэтому аппозиционные глаза имеются у дневных насекомых.[3][2]

Пигмент в аппарате пигментной изоляции может перемещаться внутри клеток, что делает омматидии полупроницаемыми для боковых лучей. Благодаря этому, насекомые с такими глазами хорошо видят при слабом освещении и в темноте. У ночных насекомых входящие в глаз трахеи также пересекаются в одной плоскости и образуют пластинкообразное сплетение, называемое трахейным тапетумом. Он обладает способностью отражать лучи, и именно благодаря ему у видов с суперпозиционными глазами при слабом освещении глаза отсвечивают красным.[3](фото)

Такие глаза отличаются тем, что в них происходит суммирование нервных сигналов от некоторой части зрительных клеток, свет в которые приходит из одного места. Такой тип глаза имеется у мух.[1]

Зрение насекомых

У соседних омматидиев зрительные оси сильно сближены между собой, что дает насекомым способность лучше различать точки, находящиеся близко друг к другу. В результате, острота их зрения примерно в 3 раза выше, чем у человека. Вместе с тем, при удалении объекта от глаза зрение ухудшается; таким образом, насекомые, по человеческим меркам, близоруки.

Еще одно преимущество фасеточных глаз состоит в том, что множество омматидиев позволяет лучше следить за мелькающими и быстро перемещающимися объектами. Для нас слитное изображение на экране формируется при движении пленки 16 кадров в секунду, а для насекомых – при 250-300. Это создает им преимущество при быстром полете.

Насекомые могут воспринимать поляризацию света. Мало того, что они видят все объекты объемными, они различают тонкие оттенки и переливы цветов, недоступные человеческому глазу. У большинства насекомых зрение цветное, черно-белое имеется лишь у примитивных форм, обитающих в пещерах, у большого мучного хрущака и термитов. У летающих растительноядных видов них есть светоприемник, «настроенный» на восприятие в ультрафиолетовом спектре, благодаря чему они лучше различают чашечки цветков с воздуха.[2]

 

Статья составлена с использованием следующих материалов:

Литературные источники:

1.

Биологический энциклопедический словарь. М.: Научное издательство «Большая Российская Энциклопедия». – 1995 г. — 863 с.

2.

Захваткин Ю.А., Курс общей энтомологии, Москва, «Колос», 2001 — 376 с.

3.

Шванвич Б.Н. Курс общей энтомологии. — М.Л. Советская наука. 1949.—900 с., ил.

Изображения (переработаны):

4.

Шванвич Б.Н. Курс общей энтомологии. — М.Л. Советская наука. 1949.—900 с., ил. Иллюстрации из книги. ©

5.6.7.8.9.10. Свернуть Список всех источников

Глаза фасеточные: чем отличаются от простых?

В процессе эволюции зрения у некоторых животных возникают довольно сложные оптические приборы. К таким, безусловно, можно отнести глаза фасеточные. Они сформировались у насекомых и ракообразных, некоторых членистоногих и беспозвоночных. Чем отличается фасеточный глаз от простого, каковы его основные функции? Об этом поговорим в нашем сегодняшнем материале.

глаза фасеточные

Глаза фасеточные

Это оптическая система, растровая, где отсутствует единая сетчатка. А все рецепторы объединены в небольшие ретинулы (группы), образуя выпуклый слой, не содержащий более никаких нервных окончаний. Таким образом, глаз состоит из множества отдельных единиц – омматидий, объединяющихся в общую систему зрения.

Глаза фасеточные, присущие, к примеру, насекомым, отличаются от бинокулярных (присущих в том числе и человеку) плохим определением мелких деталей. Зато они способны различать колебания света (до 300 Гц), тогда как для человека предельные возможности – 50 Гц. А еще мембрана такого типа глаз имеет трубчатую структуру. Ввиду этого глаза фасеточные не имеют таких особенностей рефракции, как дальнозоркость или близорукость, для них неприменимо понятие аккомодации.

чем отличается фасеточный глаз от простого

Некоторые особенности строения и зрения

У многих насекомых органы зрения занимают большую часть головы и фактически неподвижны. К примеру, глаза фасеточные у стрекозы состоят из 30 000 частиц, образуя сложную структуру. У бабочек – 17 000 омматидиев, у мухи – 4 тысячи, у пчелы – 5. Наименьшее количество частичек у муравья рабочего – 100 штук.

Бинокулярное или фасеточное?

Первый тип зрения позволяет воспринимать объем предметов, их мелкие детали, оценивать расстояния до объектов и их расположение по отношению друг к другу. Однако бинокулярное зрение человека ограничивается углом в 45 градусов. Если обзор необходим более полный, глазное яблоко осуществляет движение на рефлекторном уровне (либо мы повернем голову вокруг оси). Фасеточные глаза в виде полусфер с омматидиями позволяют видеть окружающую действительность со всех сторон, не поворачивая органов зрения или головы. Причем изображение, которое передает при этом глаз, очень похоже на мозаику: одной структурной единицей глаза воспринимается отдельный элемент, а вместе они отвечают за воссоздание полной картины.

сложные фасеточные глаза имеют

Разновидности

Омматидии имеют анатомические особенности, в результате чего и различаются их оптические свойства (к примеру, у разных насекомых). Ученые определяют три вида фасета:

  1. Аппозиционные. Такие сложные фасеточные глаза есть у дневных насекомых. Пигмент, не имеющий прозрачных свойств, разделяет фасеты – частички, что находятся рядом. И глазные рецепторы могут воспринимать только свет, совпадающий с осью определенного омматидия.
  2. Оптикосуперпозиционные. Такие сложные фасеточные глаза имеют некоторые ракообразные, а также ночные и сумеречные насекомые. Пигмент, содержащийся в глазу, попеременно изолирует омматидии, перемещаясь, что повышает чувствительность органов зрения при небольшом освещении.
  3. Нейросуперпозиционные. Различные омматидии суммируют сигнал, поступающий из одной точки в пространстве.сложные фасеточные глаза есть у

Кстати, некоторые виды насекомых имеют смешанный тип фасеточных органов зрения, а у многих, кроме рассматриваемых нами, имеются еще и простые глаза. Так, у мухи, к примеру, по бокам головы расположены парные фасеточные органы довольно больших размеров. А на темени есть три простых глаза, выполняющих вспомогательные функции. Такая же организация органов зрения и у пчелы – то есть всего пять глаз!

У некоторых ракообразных фасеточные глаза как бы сидят на подвижных выростах-стебельках.

А у некоторых амфибий и рыб имеется еще и дополнительный (теменной) глаз, который различает свет, но обладает предметным зрением. Сетчатка его состоит только из клеток и рецепторов.

Современные научные разработки

В последнее время глаза фасеточные – предмет изучения и восторга ученых. Ведь такие органы зрения, ввиду своего оригинального строения, дают почву для научных изобретений и изысканий в мире современной оптики. Основные преимущества – широкий обзор пространства, разработка искусственных фасеток, используемых преимущественно в миниатюрных, компактных, секретных системах наблюдения.

Глаз — Википедия

Глаз (лат. oculus) — сенсорный орган (орган зрительной системы) животных, обладающий способностью воспринимать электромагнитное излучение в световом диапазоне длин волн и обеспечивающий функцию зрения. У человека через глаз поступает около 90 % информации из окружающего мира[1].

Глаз позвоночных животных представляет собой периферическую часть зрительного анализатора, в котором фоторецепторную функцию выполняют нейросенсорные (фоторецепторные) клетки сетчатки[2].

Эволюция глаза

Эволюция глаза: глазное пятно — глазная ямка — глазной бокал — глазной пузырь — глазное яблоко.

У беспозвоночных животных встречаются очень разнообразные по типу строения и зрительным возможностям глаза и глазки — одноклеточные и многоклеточные, прямые и обращённые (инвертированные), паренхимные и эпителиальные, простые и сложные.

У членистоногих часто присутствует несколько простых глаз (иногда непарный простой глазок как, например, науплиальный глаз ракообразных) или пара сложных фасеточных глаз. Среди членистоногих некоторые виды одновременно имеют и простые, и сложные глаза. Например, у ос два сложных глаза и три простых глаза (глазка). У скорпионов 3—6 пар глаз (1 пара — главные, или медиальные, остальные — боковые). У щитня — 3. В эволюции фасеточные глаза произошли путём слияния простых глазков. Близкие по строению к простому глазу глаза мечехвостов и скорпионов, видимо, возникли из сложных глаз трилобитообразных предков путём слияния их элементов.

Глаз человека состоит из глазного яблока и зрительного нерва с его оболочками. У человека и др. позвоночных имеется по два глаза, расположенных в глазницах черепа.

Этот орган возник один раз и, несмотря на различное строение у животных разных типов, имеет очень похожий генетический код управления развитием глаза. В 1994 году швейцарский профессор Вальтер Геринг (нем. Walter Gehring) открыл ген Pax6 (этот ген относится к классу мастер-генов, то есть таких, которые управляют активностью и работой других генов). Этот ген присутствует как у Homo Sapiens, так и у многих других видов, в частности у насекомых, но у медуз этот ген отсутствует. В 2010 году группа швейцарских учёных во главе с В. Герингом, обнаружила у медуз вида Cladonema radiatum ген Pax-A. Пересадив данный ген от медузы к мухе дрозофиле, и управляя его деятельностью, удалось вырастить нормальные глаза мух в нескольких нетипичных местах[3].

Как установлено с помощью методов генетической трансформации, гены eyeless дрозофилы и small eye мыши, имеющие высокую гомологичность, контролируют развитие глаза: при создании генноинженерной конструкции, с помощью которой вызывалась экспрессия гена мыши в различных имагинальных дисках мухи, у мухи появлялись эктопические фасеточные глаза на ногах, крыльях и других частях тела[4][5]. В целом в развитие глаза вовлечено несколько тысяч генов, однако один-единственный «пусковой ген» (мастер-ген) осуществляет запуск всей этой генной программы. То, что этот ген сохранил свою функцию у столь далёких групп, как насекомые и позвоночные, может свидетельствовать об общем происхождении глаз всех двустороннесимметричных животных.

Внутреннее строение

Глазное яблоко состоит из оболочек, которые окружают внутреннее ядро глаза, представляющее его прозрачное содержимое — стекловидное тело, хрусталик, водянистая влага в передней и задней камерах.

Ядро глазного яблока окружают три оболочки: наружная, средняя и внутренняя.

  1. Наружная — очень плотная фиброзная оболочка глазного яблока (tunica fibrosa bulbi), к которой прикрепляются наружные мышцы глазного яблока, выполняет защитную функцию и благодаря тургору обусловливает форму глаза. Она состоит из передней прозрачной части — роговицы, и задней непрозрачной части белесоватого цвета — склеры.
  2. Средняя, или сосудистая, оболочка глазного яблока, играет важную роль в обменных процессах, обеспечивая питание глаза и выведение продуктов обмена. Она богата кровеносными сосудами и пигментом (богатые пигментом клетки хориоидеи препятствуют проникновению света через склеру, устраняя светорассеяние). Она образована радужкой, ресничным телом и собственно сосудистой оболочкой. В центре радужки имеется круглое отверстие — зрачок, через которое лучи света проникают внутрь глазного яблока и достигают сетчатки (величина зрачка изменяется в результате взаимодействия гладких мышечных волокон — сфинктера и дилататора, заключённых в радужке и иннервируемых парасимпатическим и симпатическим нервами). Радужка содержит различное количество пигмента, от которого зависит её окраска — «цвет глаз».
  3. Внутренняя, или сетчатая, оболочка глазного яблока, — сетчатка — рецепторная часть зрительного анализатора, здесь происходит непосредственное восприятие света, биохимические превращения зрительных пигментов, изменение электрических свойств нейронов и передача информации в центральную нервную систему.

С функциональной точки зрения, оболочки глаза и её производные подразделяют на три аппарата: рефракционный (светопреломляющий) и аккомодационный (приспособительный), формирующие оптическую систему глаза, и сенсорный (рецепторный) аппарат.

Светопреломляющий аппарат

Светопреломляющий аппарат глаза представляет собой сложную систему линз, формирующую на сетчатке уменьшенное и перевёрнутое изображение внешнего мира, включает в себя роговицу, камерную влагу — жидкости передней и задней камер глаза, хрусталик, а также стекловидное тело, позади которого лежит сетчатка, воспринимающая свет.

Аккомодационный аппарат

Аккомодационный аппарат глаза обеспечивает фокусировку изображения на сетчатке, а также приспособление глаза к интенсивности освещения. Он включает в себя радужку с отверстием в центре — зрачком — и ресничное тело с ресничным пояском хрусталика.

Фокусировка изображения обеспечивается за счёт изменения кривизны хрусталика, которая регулируется цилиарной мышцей. При увеличении кривизны хрусталик становится более выпуклым и сильнее преломляет свет, настраиваясь на видение близко расположенных объектов. При расслаблении мышцы хрусталик становится более плоским, и глаз приспосабливается для видения удалённых предметов. У других животных, в частности, головоногих, при аккомодации превалирует как раз изменение расстояния между хрусталиком и сетчаткой.

Зрачок представляет собой отверстие переменного размера в радужной оболочке. Он выполняет роль диафрагмы глаза, регулируя количество света, падающего на сетчатку. При ярком свете кольцевые мышцы радужки сокращаются, а радиальные расслабляются, при этом зрачок сужается, и количество света, попадающего на сетчатку, уменьшается, это предохраняет её от повреждения. При слабом свете наоборот, сокращаются радиальные мышцы и зрачок расширяется, пропуская в глаз больше света.

Рецепторный аппарат

Рецепторный аппарат глаза представлен зрительной частью сетчатки, содержащей фоторецепторные клетки (высокодифференцированные нервные элементы), а также тела и аксоны нейронов (проводящие нервное раздражение клетки и нервные волокна), расположенных поверх сетчатки и соединяющиеся в слепом пятне в зрительный нерв.

Сетчатка также имеет слоистое строение. Устройство сетчатой оболочки чрезвычайно сложное. Микроскопически в ней выделяют 10 слоёв. Самый наружный слой является свето-цветовоспринимающим, он обращён к сосудистой оболочке (внутрь) и состоит из нейроэпителиальных клеток — палочек и колбочек, воспринимающих свет и цвета, следующие слои образованы проводящими нервное раздражение клетками и нервными волокнами. У человека толщина сетчатки очень мала, на разных участках она составляет от 0,05 до 0,5 мм.

Свет входит в глаз через роговицу, проходит последовательно сквозь жидкость передней (и задней) камеры, хрусталик и стекловидное тело, пройдя через всю толщу сетчатки, попадает на отростки светочувствительных клеток — палочек и колбочек. В них протекают фотохимические процессы, обеспечивающие цветовое зрение.

Областью наиболее высокого (чувствительного) зрения, центрального, в сетчатке является так называемое жёлтое пятно с центральной ямкой, содержащей только колбочки (здесь толщина сетчатки до 0,08—0,05 мм) — ответственных за цветовое зрение (цветоощущение). То есть вся световая информация, которая попадает на жёлтое пятно, передаётся в мозг наиболее полно. Место на сетчатке, где нет ни палочек, ни колбочек, называется слепым пятном, — оттуда зрительный нерв выходит на другую сторону сетчатки и далее в мозг.

У многих позвоночных позади сетчатки расположен тапетум — особый слой сосудистой оболочки глаза, выполняющий функцию зеркальца. Он отражает прошедший сквозь сетчатку свет обратно на неё, таким образом повышая световую чувствительность глаз. Покрывает всё глазное дно или его часть, визуально напоминает перламутр.

Структура коннекто́ма сетчатки глаза человека картируется в рамках проекта EyeWire.

Восприятие изображения предметов

Чёткое изображение предметов на сетчатке обеспечиваются сложной уникальной оптической системой глаза, состоящей из роговицы, жидкостей передней и задней камер, хрусталика и стекловидного тела. Световые лучи проходят сквозь перечисленные среды оптической системы глаза и преломляются в них согласно законам оптики. Основное значение для преломления света в глазу имеет хрусталик.

Для чёткого восприятия предметов необходимо, чтобы их изображение всегда фокусировалось в центре сетчатки. Функционально глаз приспособлен для рассмотрения удалённых предметов. Однако люди могут чётко различать предметы, расположенные на разном расстоянии от глаза, благодаря способности хрусталика изменять свою кривизну, а соответственно и преломляющую силу глаза. Способность глаза приспосабливаться к ясному видению предметов, расположенных на разном расстоянии, называют аккомодацией. Нарушение аккомодационной способности хрусталика приводит к нарушению остроты зрения и возникновения близорукости или дальнозоркости.

Одной из причин развития близорукости является перенапряжение ресничных мышц хрусталика при работе с очень мелкими предметами, длительного чтения при плохом освещении, чтение в транспорте. Во время чтения, письма или иной работы предмет следует располагать на расстоянии 30—35 см от глаза. Слишком яркое освещение очень раздражает фоторецепторы сетчатки глаза. Это также вредит зрению. Свет должен быть мягким, не слепить глаза.

При письме, рисовании, черчении правой рукой источник света располагают слева, чтобы тень от руки не затемняла рабочую область. Важно, чтобы было верхнее освещение. При длительном зрительном напряжении через каждый час необходимо делать 10-минутные перерывы. Следует беречь глаза от травм, пыли, инфекции.

Нарушение зрения, связанное с неравномерным преломлением света роговицей или хрусталиком, называют астигматизмом. При астигматизме обычно снижается острота зрения, изображение становится нечётким и искажённым. Астигматизм устраняется при помощи очков с особыми (цилиндрическими) стёклами.

Близорукость — отклонение от нормальной способности оптической системы глаза преломлять лучи, которое заключается в том, что изображение предметов, расположенных далеко от глаз, возникают перед сетчаткой. Близорукость бывает врождённой и приобретённой. При естественной близорукости глазное яблоко имеет удлинённую форму, поэтому лучи от предметов фокусируются перед сетчаткой. Чётко видны предметы, расположенные на близком расстоянии, а изображение удалённых предметов нечёткое, расплывчатое. Приобретённая близорукость развивается при увеличении кривизны хрусталика вследствие нарушения обмена веществ или несоблюдения правил гигиены зрения. Существует наследственная предрасположенность к развитию близорукости. Основными причинами приобретённой близорукости являются повышенная зрительная нагрузка, плохое освещение, недостаток витаминов в пище, гиподинамия. Для исправления близорукости носят очки с двояковогнутыми линзами.

Дальнозоркость — отклонение от нормальной способности оптической системы глаза преломлять световые лучи. При врождённой дальнозоркости глазное яблоко укороченное. Поэтому изображения предметов, расположенных близко к глазам, возникают позади сетчатки. В основном дальнозоркость возникает с возрастом (приобретённая дальнозоркость) вследствие уменьшения эластичности хрусталика. При дальнозоркости нужны очки с двояковыпуклыми линзами.

Восприятие света

Мы воспринимаем свет благодаря тому, что его лучи проходят через оптическую систему глаза. Там возбуждение обрабатывается и передаётся в центральные отделы зрительной системы. Сетчатка — это сложная оболочка глаза, содержащая несколько слоёв клеток, различных по форме и функциям.

Первый (внешний) слой — пигментный, состоит из плотно расположенных эпителиальных клеток, содержащих чёрный пигмент фусцин. Он поглощает световые лучи, способствуя более четкому изображению предметов. Второй слой — рецепторный, образован светочувствительными клетками — зрительными рецепторами — фоторецепторами: колбочками и палочками. Они воспринимают свет и превращают его энергию в нервные импульсы.

В сетчатке человека насчитывают около 130 млн палочек и 7 млн колбочек. Расположены они неравномерно: в центре сетчатки находятся преимущественно колбочки, дальше от центра — колбочки и палочки, а на периферии преобладают палочки.

Колбочки обеспечивают восприятие формы и цвета предмета. Они малочувствительны к свету, возбуждаются только при ярком освещении. Больше колбочек вокруг центральной ямки. Это место скопления колбочек называют жёлтым пятном. Жёлтое пятно, особенно его центральную ямку, считают местом наилучшего видения. В норме изображение всегда фокусируется оптической системой глаза на жёлтом пятне. При этом предметы, которые воспринимаются периферическим зрением, различаются хуже.

Палочки имеют удлинённую форму, цвет не различают, но очень чувствительны к свету и поэтому возбуждаются даже при малом, так называемом сумеречном, освещении. Поэтому мы можем видеть даже в плохо освещённой комнате или в сумерках, когда очертания предметов едва отличаются. Благодаря тому, что палочки преобладают на периферии сетчатки, мы способны видеть «уголком глаза», что происходит вокруг нас.

Итак, фоторецепторы воспринимают свет и превращают его в энергию нервного импульса, который продолжает свой путь в сетчатке и проходит через третий слой клеток, образованный соединением фоторецепторов с нервными клетками, имеющими по два отростка (их называют биполярными). Далее информация по зрительным нервам через средний и промежуточный мозг передаётся в зрительные зоны коры головного мозга. На нижней поверхности мозга зрительные нервы частично пересекаются, поэтому часть информации от правого глаза поступает в левое полушарие и наоборот.

Место, где зрительный нерв выходит из сетчатки, называется слепым пятном. Оно лишено фоторецепторов. Предметы, изображение которых попадает на этот участок, не видны. Площадь слепого пятна сетчатки глаза человека (в норме) составляет от 2,5 до 6 мм².

Восприятие цвета

Многоцветность воспринимается благодаря тому, что колбочки реагируют на определённый спектр света изолированно. Существует три типа колбочек. Колбочки первого типа реагируют преимущественно на красный цвет, второго — на зелёный и третьего — на синий. Эти цвета называют основными. Под действием волн различной длины колбочки каждого типа возбуждаются неодинаково. Вследствие этого каждая длина волны воспринимается как особый цвет. Например, когда мы смотрим на радугу, то самыми заметными для нас кажутся основные цвета (красный, зелёный, синий).

Оптическим смешением основных цветов можно получить остальные цвета и оттенки. Если все три типа колбочек возбуждаются одновременно и одинаково, возникает ощущение белого цвета.

Некоторые люди, так называемые тетрахроматы, способны видеть излучения, выходящие за пределы видимого глазом обычного человека спектра и различают цвета, которые для обычного человека воспринимаются как идентичные.

Часть людей (примерно 8 % мужчин[6] и 0,4 % женщин[источник не указан 843 дня]) имеют особенность цветового восприятия, называемую дальтонизмом. Дальтоники по-своему воспринимают цвет, путая некоторые контрастные для большинства оттенки и различая свои, кажущиеся одинаковыми для остального большинства людей цвета[источник не указан 843 дня]. Считается, что неправильное различение цветов связано с недостаточным количеством одного или нескольких видов колбочек в сетчатке глаза[6]. Существует также приобретенный дальтонизм вследствие заболеваний или возрастных изменений. Дальтоники могут не ощущать своей особенности зрения до момента, пока они не столкнутся с необходимостью выбора между двумя похожими для них оттенками, воспринимаемыми как разные цвета человеком с нормальным зрением. Из-за возможности ошибки цветового восприятия часть профессий предусматривают ограничение на допуск дальтоников к работе. Интересно, что обратная сторона дальтонизма — повышенная чувствительность к некоторым, не доступным для остальных, оттенкам ещё мало изучена и редко используется в хозяйстве[источник не указан 843 дня].

Восприятие расположения предметов в пространстве

Правильная оценка расположения предметов в пространстве и расстояния до них достигается глазомером. Его можно улучшить, как и любое свойство. Глазомер особенно важен для пилотов, водителей. Улучшения восприятия предметов достигается благодаря таким характеристикам, как поле зрения, угловая скорость, бинокулярное зрение и конвергенция.

Поле зрения — это пространство, которое можно охватить глазом при фиксированном состоянии глазного яблока. Полем зрения можно охватить значительное количество предметов, их расположение на определённом расстоянии. Однако изображение предметов, находящихся в поле зрения, но расположенных ближе, частично накладывается на изображения тех, что за ними. С удалением предметов от глаза уменьшаются их размеры, рельефность их формы, разница теней на поверхности, насыщенность цветов и т. п., пока предмет не исчезает из поля зрения.

В пространстве много предметов движется, и мы можем воспринимать не только их движение, но и скорость движения. Скорость движения предметов определяют на основании скорости перемещения их по сетчатке, так называемой угловой скорости. Угловая скорость близко расположенных предметов выше, к примеру, вагоны движущегося поезда проносятся мимо наблюдателя с большой скоростью, а самолёт в небе исчезает из поля зрения медленно, хотя скорость его гораздо больше скорости поезда. Это потому, что поезд находится относительно наблюдателя намного ближе, чем самолёт. Таким образом, близко расположенные предметы исчезают из поля зрения раньше, чем отдалённые, поскольку их угловая скорость больше. Однако движение предметов, которые перемещаются чрезвычайно быстро или слишком медленно, глаз не воспринимает.

Точной оценке пространственного расположения предметов, их движения способствует также бинокулярное зрение. Это позволяет не только воспринимать объёмное изображение предмета, поскольку одновременно охватывается и левая, и правая части объекта, но и определить местоположение в пространстве, расстояние до него. Это можно объяснить тем, что когда в коре большого головного мозга объединяются ощущения от изображений предметов в левом и правом глазу, в ней происходит оценка последовательности расположения предметов, их формы.

Если преломление в левом и правом глазу неодинаковое, это приводит к нарушению бинокулярного зрения (видение двумя глазами) — косоглазия. Тогда на сетчатке возникает резкое изображение от одного глаза и расплывчатое от другого. Вызывается косоглазие нарушением иннервации мышц глаза, прирождённо или приобретённым снижением остроты зрения на один глаз и тому подобное.

Ещё одним из механизмов пространственного восприятия является восхождение глаз (конвергенция). Оси правого и левого глаза с помощью глазодвигательной мышцы сходятся на предмете, который рассматривается. Чем ближе расположен предмет, тем сильнее сокращены прямые внутренние и растянуты прямые внешние мышцы глаза. Это позволяет определить удалённость предметов.

Типы глаз

Фасеточные глаза стрекозы

Фоторецепторная способность найдена у некоторых простейших существ. Беспозвоночные, многие черви, а также двустворчатые моллюски имеют глаза простейшей структуры — без хрусталика. Среди моллюсков только головоногие имеют сложные глаза, похожие на глаза позвоночных.

Глаз насекомого составной — состоит из множества отдельных фасеток, каждая из которых собирает свет и направляет его к рецептору, чтобы создать зрительный образ. Существует десять различных типов структурной организации светоприёмных органов. При этом все схемы захвата оптического изображения, которые используются человеком, — за исключением трансфокатора (вариообъектива) и линзы Френеля — можно найти в природе. Схемы строения глаза можно категоризировать следующим образом: «простой глаз» — с одной вогнутой светоприёмной поверхностью и «сложный глаз» — состоящий из нескольких отдельных линз, расположенных на общей выпуклой поверхности[7].Стоит заметить, что слово «простой» не относится к меньшему уровню сложности или остроты восприятия. На самом деле, оба типа строения глаза могут быть адаптированы к почти любой среде или типу поведения. Единственное ограничение, присущее для данной схемы строения глаза, это разрешение. Структурная организация сложных глаз не позволяет им достичь разрешения лучше, чем 1°. Также суперпозиционные глаза могут достигать более высокой чувствительности, чем аппозиционные глаза. Именно поэтому суперпозиционные глаза больше подходят жителям сред с низким уровнем освещённости (океаническое дно) или почти полным отсутствием света (подземные водоёмы, пещеры)[7]. Глаза также естественно разделяются на две группы на основе строения клеток фоторецепторов: фоторецепторы могут быть цилиарными (как у позвоночных) или рабдомерными. Эти две группы не являются монофилийными. Так, например, книдариям также присущи цилиарные клетки в качестве «глаз»[8], а у некоторых аннелид имеются оба типа фоторецепторных клеток[9].

См. также

Примечания

Литература

Ссылки

Сложный глаз — это… Что такое Сложный глаз?

  • СЛОЖНЫЙ ГЛАЗ — Тип глаза, обнаруживаемый у многих насекомых и ракообразных. У них кроме единственного органа фокусирования (хрусталика) и поверхности проектирования (сетчатки) имеется множество отдельных оптических систем (фасетки), в каждой из которых имеется… …   Толковый словарь по психологии

  • Глаз — орган зрения. Мы изложим здесь в коротких чертах: 1) строение глаза у человека; 2) эмбриональное развитие глаза и строение его в разных классах позвоночных животных; 3) развитие органа зрения в животном царстве глаза беспозвоночных. ГЛАЗ ЧЕЛОВЕКА …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Глаз — Символизирует всеведение, всевидящее око, способность к интуитивному видению. Глаз олицетворяет всех солнечных богов, обладающих оплодотворяющей силой солнца, которая воплощается в боге царе. Платон называет глаз главным солнечным инструментом. С …   Словарь символов

  • Глаз — I (oculus) орган зрения, воспринимающий световые раздражения; является частью зрительного анализатора, который включает также зрительный нерв и зрительные центры, расположенные в коре большого мозга. Глаз состоит из глазного яблока и… …   Медицинская энциклопедия

  • ФАСЕТОЧНЫЙ ГЛАЗ — (сложный глаз), тип глаза у животных, отличающийся наличием множества отдельных фасеток. Фасеточные глаза имеются у многих ракообразных и у летающих насекомых. Каждая фасетка представляет собою самостоятельное зрительное устройство, иначе… …   Научно-технический энциклопедический словарь

  • Ракообразные* — (Crustacea). Характеристика и общая организация. Конечности. Покровы и мускулатура. Органы пищеварения. Нервная система. Органы чувств. Кровеносная система. Органы дыхания. Выделительные органы. Половые органы. Размножение …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Ракообразные — (Crustacea). Характеристика и общая организация. Конечности. Покровы и мускулатура. Органы пищеварения. Нервная система. Органы чувств. Кровеносная система. Органы дыхания. Выделительные органы. Половые органы. Размножение и развитие.… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • КЛАСС МНОГОЩЕТИНКОВЫЕ КОЛЬЧЕЦЫ (ROBUСНАЕТА) —          Полихеты названы так потому, что параподии у них включают пучки многочисленных щетинок.         По гречески poly означает много, chaeta щетинка. Полихеты типичные морские животные и очень редко встречаются в пресной воде.         Всего… …   Биологическая энциклопедия

  • ANOPHELES — ANOPHELES, род комаров, подсем. Апо phelinae, сем. Culicidae. Многие виды А. способны переносить малярийного плазмодия, чем и определяется их огромное мед. значение. В СССР живет несколько видов А.; из них важнейшие: A. maculipennis Mgn.… …   Большая медицинская энциклопедия

  • Ветвистоусые или водяные блохи — (Cladocera, см. таблицу к слову Листоногие) принадлежат к низшим ракообразным (Entomostraca), к отряду листоногих (Phyllopoda), который делится на два подотряда: жаберноногих (Branchiopoda) и ветвистоусых (Cladocera). К последнему относятся… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Удивительные факты про глаза и их сложное строение

    Вы, наверное, никогда не задумывались о том, насколько сложную структуру имеет глазное яблоко. Невероятно сложную! Это почти как маленькое чудо машиностроения! Хотя кажется таким простым, правда? Это просто маленький шарик. Насколько сложным он может быть? Как-нибудь подумайте об этом.

    Подавляющее количество информации, которую человек получает о внешнем мире, воспринимается именно глазами. И эти два шарика в нашей голове отвечают за обработку и передачу в мозг подавляющего количества информации. Вот почему сегодня мы расскажем вам несколько необычных и интересных фактов про глаза.

    Во-первых, знаете ли вы, что морковь на самом деле не улучшает зрение? Во всяком случае, не больше, чем другие овощи. Факт про то, что морковь полезна для глаз, была распространена британцами во время Второй мировой войны, чтобы немцы не узнали, что пилоты Великобритании для отражения воздушных атак немцев использовали радары (эту технологию нужно было засекретить).

    Чтобы скрыть свои преимущества, британцы придумали легенду, будто их пилоты имеют прекрасное зрение, потому что едят много моркови. С тех пор люди верят в это. Мы даже не шутим. Вот 25 привлекающих внимание фактов про глаза и их невероятно сложное строение:

    Топ-25: Удивительные факты про глаза и их сложное строение
    25. Глаза человека могут различать более 10 миллионов цветов.

    Топ-25: Удивительные факты про глаза и их сложное строение
    24. Люди с голубыми глазами имеют более высокую переносимость алкоголя, чем обладатели любого другого цвета глаз.

    Топ-25: Удивительные факты про глаза и их сложное строение
    23. Около 10% времени своего бодрствования человек проводит с закрытыми глазами. Как такое может быть? Мы моргаем.

    Топ-25: Удивительные факты про глаза и их сложное строение
    22. Глаз страуса больше, чем размер его мозга.

    Топ-25: Удивительные факты про глаза и их сложное строение
    21. Глаза Эйнштейна хранятся в сейфе в Нью-Йорке.

    Топ-25: Удивительные факты про глаза и их сложное строение
    20. Считается, что чёрные лемуры — единственные из приматов, за исключением человека, у кого глаза могут быть голубого цвета.

    Топ-25: Удивительные факты про глаза и их сложное строение
    19. У медоносных пчёл 5 глаз: 2 сложных и 3 простых. Предполагается, что двумя сложными глазами, расположенными по бокам головы и состоящими из множества ячеек (фасеток), пчела видит изображение предмета (правда, только в виде мозаики).

    Три простых глаза расположены на темени в виде точек, которые можно зрительно соединить в треугольник. По мнению учёных, эти глаза выполняют вспомогательную роль: ими насекомое воспринимает интенсивность освещения, получает информацию о наступлении рассвета или сумерек.

    Топ-25: Удивительные факты про глаза и их сложное строение
    18. Пространство между бровями называется «назион».

    Топ-25: Удивительные факты про глаза и их сложное строение
    17. Глаз гигантского кальмара может достигать размеров баскетбольного мяча.

    Топ-25: Удивительные факты про глаза и их сложное строение
    16. Дельфины спят с одним открытым глазом.

    Во время сна дельфины отключают только одно полушарие мозга, закрывая при этом противоположный глаз. Другая, бодрствующая, половина мозга тем временем следит за всем происходящим вокруг, контролируя дыхание животного.

    Топ-25: Удивительные факты про глаза и их сложное строение
    15. У кошек — три века.

    Топ-25: Удивительные факты про глаза и их сложное строение
    14. Боязнь глаз называется «омматофобия». Проявление этой фобии выражается в том, что человек боится смотреть в глаза другим, испытывая от этого ужас. Такие люди обычно ходят в капюшонах, прикрывающих глаза, или в чёрных очках.

    Топ-25: Удивительные факты про глаза и их сложное строение
    13. Зелёный — самый редкий цвет глаз. Зелёные глаза есть всего у 2% людей, живущих на Земле.

    Топ-25: Удивительные факты про глаза и их сложное строение
    12. Если бы человеческий глаз был фотоаппаратом, то он был бы 576-мегапиксельным.

    Топ-25: Удивительные факты про глаза и их сложное строение
    11. У каждого человека с голубыми глазами есть далёкий-далёкий предок, который жил недалеко от Чёрного моря 10.000 лет назад.

    Топ-25: Удивительные факты про глаза и их сложное строение
    10. Для лечения амблиопии («ленивый глаз») учёные, как ни удивительно, используют «Тетрис» (да-да, видеоигру).

    Топ-25: Удивительные факты про глаза и их сложное строение
    9. Человеческие глаза могут получить солнечный ожог.

    Топ-25: Удивительные факты про глаза и их сложное строение
    8. Голубые глаза, как правило, более чувствительны к свету.

    Топ-25: Удивительные факты про глаза и их сложное строение
    7. Некоторые ящерицы выстреливают кровью из глаз, чтобы защититься от потенциальных хищников.

    Рогатые, или жабовидные ящерицы имеют необычный защитный механизм, который срабатывает в самые опасные моменты. Перекрывая отток крови из головы, тем самым повышая в ней кровяное давление и вызывая разрыв маленьких сосудов вокруг век, рептилия направленно выстреливает кровью из уголков глаз. Расстояние, на которое она может выстрелить таким способом, может достигать 5 метров.

    Топ-25: Удивительные факты про глаза и их сложное строение
    6. Eigengrau — это цвет, который видит человек, когда его глаза закрыты или когда он находится в полной темноте (его также называют «мозговой серый», «собственный цвет сетчатки» или, если перевести с немецкого буквально, «внутренний/собственный серый»).

    Топ-25: Удивительные факты про глаза и их сложное строение
    5. Очки ночного видения зелёные потому, что человеческий глаз способен различить больше оттенков зелёного цвета, чем какого-либо другого.

    Топ-25: Удивительные факты про глаза и их сложное строение
    4. Морковь, на самом деле, не улучшает зрение (по крайней мере, не больше, чем любой другой овощ).

    Эта ложь была распространена британцами во время Второй мировой войны, чтобы немцы не узнали, что для отражения атак противника пилоты Великобритании пользуются бортовыми радиолокационными радарами. Представители ВВС Великобритании во время публичных выступлений говорили, что причина, по которой их пилоты хорошо видят в темноте и очень точно бьют по целям, в том, что они употребляют в пищу морковь в большом количестве. Это была не самая убедительная причина, но, тем не менее, люди в это поверили.

    Топ-25: Удивительные факты про глаза и их сложное строение
    3. Боно (Bono) носит очки не для имиджа, а потому что у него глаукома.

    Топ-25: Удивительные факты про глаза и их сложное строение
    2. Брови человека полностью обновляются каждые 2 месяца.

    Топ-25: Удивительные факты про глаза и их сложное строение
    1. Некоторые женщины имеют генетическую мутацию, в результате которой они могут видеть на миллионы больше цветов и оттенков (до 100 миллионов).

    Предложения со словосочетанием СЛОЖНЫЕ ГЛАЗА

    Каждый такой глазок видит только часть изображения, а весь сложный глаз — целостную картину, состоящую из отдельных кусочков — картинок, увиденных каждым простым глазком. А глаза самым чудесным образом видели ворсинки, прожилки на их крыльях, их челюсти и сложные глаза. Он ходил на двух ногах, имел длинные руки с хорошо развитым большим хватательным пальцем, сложные глаза в передней части черепа с перекрывающимся полем зрения. Зрительные ощущения, воспринимаемые этими сложными глазами, складываются, как показали исследования, из отдельных точек, наподобие печатных растровых иллюстраций. Установлено, например, что волоски на передних ножках служат пчеле для собирания пыльцы с передних частей тела и для чистки сложных глаз.

    Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

    Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.

    Насколько понятно значение слова киянка (существительное):

    Кристально
    понятно

    Понятно
    в общих чертах

    Могу только
    догадываться

    Понятия не имею,
    что это

    Другое
    Пропустить

    Некоторые различаются очень сильно (например сложные глаза мухи и зеркальные глаза гребешка), а некоторые схожи — как глаза осьминога и человека, которые в результате конвергенции приобрели почти одинаковое строение. Некоторые виды муравьёв имеют пару сложных глаз в передней части головы и три простых глаза в верхней части. На голове расположены три простых, два сложных глаза, пара усиков и ротовой аппарат. Форма головы, размеры, расположение простых и сложных глаз у всех особей различны. Из зачатков по бокам головы формируются сложные глаза. Сложные глаза расположены по бокам головы. Сложными глазами пчелы различают окружающие их предметы в своей цветовой гамме. Сложные глаза дают достаточно чёткую картину предметов, находящихся вблизи, и позволяют различать силуэты отдалённых предметов. На поверхности сложного глаза ом-матидии образуют шестигранные фасетки. Сложными глазами пчелы различают предметы на большом расстоянии, а также их цвет. Благодаря сложным глазам пчела хорошо различает движущиеся предметы и определяет форму неподвижных объектов во время полётов. Простые глаза пчёлам служат для ориентации в темноте и повышения общей светочувствительности сложных глаз. На голове расположены основные органы чувств, позволяющие ориентироваться в пространстве (пара сложных глаз и пара усиков-антенн), а также ротовой аппарат грызущего, сосущего, колюще-сосущего или лижущего типа. На теменной части головы между сложными глазами помещаются 3 простых глаза. Нет у неё ни сложных глаз, ни крыльев, ни шеи, ни осиной талии. У трутня сравнительно большая округлая голова со сложными глазами, занимающими большую часть головы. Благодаря тому, что отдельные зрительные столбики направлены фасетками в разные стороны, сложный глаз одновременно получает очень большое количество изображений, рисующих отдельные части рассматриваемого предмета. Особенностью сложных глаз является и то, что в силу своего устройства они лучше воспринимают впечатления от движущихся предметов, что помогает им быстро ориентироваться в окружающей местности.

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о