Поляризованное стекло: преимущества и недостатки- «Здоровое око» – Поляризационные очки, как проверить наличие поляризации

Поляризационная пленка для автомобилей (Электрохромное стекло)

 Если вы попали к нам на сайт по столь неординарному запросу, как наименование нашей статьи, либо просто зашли на эту страничку случайно, чтобы узнать о чем то новом из возможного в мире автомобилей, то знайте, мы постараемся вас не разочаровать.
Да, действительно, здесь мы хотели бы поговорить о редких опциях связанные с эффектом поляризации света, которые были реализованы или планировались к внедрению на машинах. К сожалению, на сегодняшний день, все о чем мы будем говорить практически невостребованно. Быть может это является следствием несовершенства технологий, а может из-за прагматизма потребителей и маркетологов.

Явление поляризации света

 Поляризация света, что это!? Вообще, конечно, у вас такого вопроса возникнуть не должно, так как явление это рассматривается в курсе средней образовательной школы. Тем не менее, если вы в свое время пропустили этот урок или он был вам не интересен, мы постараемся быстренько нагнать упущенное.
Итак, поляризация — это явление ограничения светового потока путем пропускания его через решетку — поляризатор, с расстоянием между «нитками» решетки соизмеримыми с длиной волны. Такая решетка ограничивает «объемное» распространение светового потока, пропуская лишь за собой световую волну в одной плоскости. Наиболее наглядно процедуру поляризации можно наблюдать на рисунке ниже.

Теперь развивая нашу мысль, попробуем представить, что будет, если поляризованный свет пропустить еще раз через такую решетку. Хорошо если «нити» решетки направлены параллельно нитям на предыдущем поляризаторе, тогда свет также пройдет и далее … Но, если мы развернем решетку – поляризатор перпендикулярно первой, то в итоге, на выходе, вообще не увидим света, ведь щель между нитями соизмерима с длиной волны, о чем мы уже говорили, а значит волна не пройдет между ними. Такой эффект можно сравнить с прохождением света через зубья расчески. Свет проходит через одну расческу, но если взять две расчески и расположить их перпендикулярно друг другу, то света мы не увидим.

 Необходимо отметить, что эффект поляризации может достигаться двумя способами. Во-первых, это тот самый механический способ, который мы описали выше, когда мы поворачиваем одну решетку относительно другой. Такие решетки часто нанесены на поляризационных пленках, то есть, базируя одну решетку относительно другой в пространстве под определенным углом, мы можем изменять освещенность от минимальной до максимальной.
Второй вариант — это «электрическая поляризация». Именно он наиболее перспективен, так как не потребует механических составляющих, хотя также имеет свои недостатки, о которых мы поговорим далее. Суть такого способа заключается в том, что свет первоначально проходит через поляризатор – решетку, как и в первом варианте, а потом через жидкие кристаллы, которые в обычном состоянии представляют собой хаотично расположенные элементы.

При этом, в случае подведения электрического тока «жидкие кристаллы» докручиваются по направлению протекания тока, то есть становятся теми самыми «нитями» решетки – поляризатора, которые в состоянии ограничить световой поток.

Применение поляризации света в автомобилях. Работа электромонохромного зеркала, «электронной» тонировки, ограничения света от встречных фар

 Как же можно применить поляризацию с пользой в автомобилестроении, чтобы еще одно давно изученное явление стало работать на благо общества и каждого из нас в отдельности!?
Первое, о чем можно рассказать без каких – либо натяжек, по поводу применения, это электромонохромные зеркала заднего вида. Такие зеркала часто применяются как салонные зеркала заднего вида, в топовых версиях автомобилей, для того, чтобы избавить водителя от возможного ослепления, в случае если свет от сзади едущего автомобиля попадет в зеркало. В этом случае зеркало автоматически затемняется, ограничивая падение и отражение светового потока на его поверхность.

  Еще одним вариантом использования поляризации может быть использование этого эффекта для электронной тонировки автомобиля. «Включая» поляризацию можно изменять затемнение стекла, тем самым создавая эффект его тонировки. 
Следующим практичным возможным применением, до которого так до сих пор массово и так не дошла автомобильная промышленность, является применение явления поляризации для ограничения светового потока от встречного света фар. Так, предотвратить ослепление водителя можно применив следующую схему… Головные блок — фары автомобилей должны выпускаться с поляризационным покрытием, в этом случае свет идущий от них уже будет поляризованный горизонтально или вертикально. Также необходимо предусмотреть и аналогичный электронный поляризатор и в лобовом стекле. В итоге, при включении электронного поляризатора в лобовом стекле можно ограничить свет идущий от фар встречного автомобиля. Такое ограничение можно сделать автоматическим, то есть обеспечить срабатывания поляризатора в лобовом стекле от датчика освещенности.

На самом деле здесь и сейчас мы привели лишь наиболее известные варианты применения поляризации в автомобилестроении, если пофантазировать еще, то можно придумать кое-что не менее оригинальное…

Недостатки применения технологии поляризации света для автомобиля

 Почему же зная о таких уникальных и полезных свойствах поляризации она так и не получила широкого распространения в производстве автомобилестроения?

Здесь все, как всегда, риторично. Технология «электронной» поляризации чувствительна к влажности, перепадам температур, что делает ее трудноприменимой для машин, которые часто вынуждены эксплуатироваться и в зной и лютый мороз.
Важно отметить и то обстоятельство, что данная технология слишком дорогая для рядовых автолюбителей, что сказывается на конечной стоимости поляризационная пленки или аналогичных вариантах, которые является сродни поляризационной пленке.

Нанополяризатор — Википедия

Материал из Википедии — свободной энциклопедии

Металло-диэлектрический нанополяризатор представляет собой решётку периодически расположенных (с периодом порядка ста нанометров) нитевидных проводников на поверхности диэлектрика. Излучение, поляризованное так, что электрическое поле параллельно нитевидным проводникам, отражается от наноструктуры, а излучение, поляризованное ортогонально нитям, проходит через наноструктуру почти без потерь. Диэлектрический отражательный нанополяризатор представляет собой гофрированную многослойную диэлектрическую плёнку. В качестве материалов с большим и малым показателями преломления используются кремний (Si) и его двуокись (SiO
2
). Типичный спектр пропускания многослойной периодической наноструктуры. Δ — рабочий спектральный диапазон поляризатора на основе такой структуры. ТЕ — волна с ориентацией электрического вектора перпендикулярно плоскости падения. ТМ — волна с ориентацией магнитного вектора перпендикулярно плоскости падения. Прохождение светового пучка через поляризатор. Справа на поляризатор падает неполяризованное излучение, однако через поляризатор проходит только излучение, поляризованное вдоль оси пропускания поляризатора. Излучение ортогональной поляризации может быть направлено по другому пути. В этом случае поляризатор превращается в делитель светового пучка. Если направление всех лучей изменить на противоположное, то устройство будет работать как объединитель поляризованных пучков.

Нанополяризатор (англ. nanowire-grid polarizer) — синтетический объёмный или пленочный композитный материал, обладающий анизотропией пропускания и/или отражения, обусловленной структурой его компонента.

Объёмные поляризаторы для ближнего инфракрасного диапазона изготавливаются из стекла, содержащего металлические наночастицы вытянутой формы, ориентированные вдоль некоторой оси. Поляризаторы Polar Cor производства компании Corning, США изготавливаются из боросиликатного стекла, содержащего анизотропные наночастицы серебра, а в поляризаторах производства фирмы HOYA Corp., Япония, вместо частиц серебра используются частицы меди.

Недавно разработано два типа пленочных поляризационных материалов, использующих различные механизмы создания анизотропии отражения. В пленочном поляризаторе, разработанном компанией NanoOpto Corporation (США), используется анизотропия отражения от металлического зеркала, изготовленного в виде периодической решётки нанометрового размера. Пленочный поляризатор, созданный фирмой Photonic Lattice Inc. (Япония), использует анизотропию отражения от гофрированной многослойной диэлектрической плёнки.

Принцип действия поляризаторов на основе многослойных структурированных плёнок основан на том, что периодические диэлектрические структуры обладают двулучепреломлением формы. Это значит, что эффективный показатель преломления слоев зависит от поляризации света. При этом спектр отражения многослойного диэлектрического зеркала зависит от значений показателей преломления в слоях. Следовательно, если из анизотропных структур создать многослойное покрытие, то спектр отражения такого зеркала будет обладать сильной анизотропией. Отметим, что многослойная структурированная плёнка фактически является анизотропным одномерным фотонным кристаллом.

Принцип работы поляризаторов на основе металлических линейных наноструктур (линейных решёток) основан на резком уменьшении коэффициента отражения от такой структуры для излучения с ориентацией вектора электрического поля, перпендикулярной штрихам решётки. Линейные решётки с металлическими «штрихами» используются в качестве поляризаторов ещё со времен первых опытов Герца по изучению электромагнитных волн. Однако до недавнего времени такие устройства использовались только в радиодиапазоне электромагнитных волн. Если линейная решётка состоит из тонких проводящих штрихов с периодом меньше длины волны, то такая структура принципиально по-разному действует на световые волны, поляризованные вдоль штрихов и перпендикулярно им. В первом случае решётка ведёт себя так же, как и сплошная металлическая поверхность, а во втором случае — как диэлектрик.

Поляризаторы широко используются в пассивных и активных компонентах современных волоконно-оптических систем связи. Они пропускают линейно-поляризованное излучение с направлением электрического поля, совпадающим с направлением оси пропускания, и блокируют компоненту с ортогональной поляризацией. Если блокируемая компонента не поглощается, а отражается, то устройство может выполнять функции поляризационного делителя или объединителя световых пучков.

  • Павлова Е.Г. Поляризаторы на основе пленочных наноструктур и их применение в волоконно-оптических системах связи // Lightwave Russian Edition — № 3, 2006 — С. 49–52
  • Wang J.J. et al. Innovative high performance nanowire-grid polarizers and integrated isolators // IEEE j. of Selected Topics in QE.- vol. 11, 2005 — pp. 241—253  (англ.)
  • Tyan R., Sun P. et al. Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form birefringent multilayer gratings // Opt. Lett. — vol. 21, 1996, — pp. 761—763  (англ.)
  • Taylor M., Bucher G. High contrast polarizers for the near infrared // Proc. SPIE, Polarization Considerations for Optical Systems II — vol. 1166, 1989 — pp. 446—453  (англ.)

Занимательная физика. Поляризация света. — flesh atronach — LiveJournal

В домашних условиях можно поставить много занимательных опытов с поляризованным светом.
Наиболее доступный вариант — в качестве источника света используется обыкновенный ЖК монитор (залить всё поле экрана белым цветом) а в качестве анализатора — поляризационные солнцезащитные очки polaroid. Также в магазинах фототоваров продаются поляризационные светофильтры для фотоаппаратов.

Есть такие материалы, которые поворачивают плоскость поляризации проходящего через них света. В быту это целлофан и обычный канцелярский скотч. Попробуйте склеить ленту скотча саму на себя липким слоем посмотреть на ее через поляроид в свете белого монитора.

Красивые тона дает целлофан, особенно смятый (значительно увеличивается цветовая гамма). Многие, увидевшие это впервые, не могут сдержать своего восторга.
Деформированный лист полиэтилена в 40-кратном увеличении:



Поляризованный свет используют для дефектоскопии. Если в прозрачном материале появляются напряжения (вызванные внутренними напряжениями или внешней нагрузкой), то материал начинает неоднородно поворачивать угол поляризации, что видно в поляризованном свете. Данный эффект в полимерах проявляется сильнее, чем в стекле. Напряженные участки окрашиваются в различные цвета, причем, чем больше напряжение, тем интенсивнее окраска.

Возьмем например прозрачную коробочку от CD. Вот так она выглядит в обычном свете:


Расположим ее между двумя поляризаторами и посмотрим в проходящем свете.

Это явление называется пьезооптический эффект (фотоупругость).
Еще фотографии. Очки в обычном и поляризованном свете:


Пластиковая крышка в обычном и поляризованном свете:

Возьмем теперь пивной бокал и пепельницу:



Кусочки целлофана и чертёжная линейка:



Используя целлофан как фон, можно создавать интересные композиции. Снимки выполнены при помощи полярископа ПКС-125:

Еще можно поиграться с полимерной пленкой, пропускающей поляризованный свет только в одной плоскости. Достать такую пленку несложно. Для этого нужно с жидкокристаллического экрана ненужного устройства (калькулятор, тетрис и т.д.) аккуратно отклеить пленку, покрывающую его с лицевой стороны и с обратной. Пленка с обратной стороны дополнительно заклеена светоотражающим слоем. Аккуратно отклеив пленку нужно стереть с нее клей, это можно сделать при помощи этилового спирта. (Бензин клей не растворяет, а ацетон повреждает пленку) После этого мы получим две пленки-поляроида.
Видео с полимерной пленкой

Возьмем два поляроида и наложим друг на друга. Свет через них проходит свободно. Оба поляроида пропускают волну с одинаковым вектором поляризации. Например вертикальным.


А теперь повернем один из поляроидов на 90 градусов. В процессе поворота количество проходящего света будет уменьшатся, а к концу поворота свет не будет проходить вообще (или будет проходить незначительная часть).

Это происходит потому, что первый поляроид (неподвижный) пропускает свет с вертикальной поляризацией, а тот, который мы повернули пропускает свет только с горизонтальной поляризацией, в результате тот свет, который смог пройти первый поляроид отсекается вторым. Изменение величины пропускаемого света при повороте наглядно видно на анимации:

Свет, отражаясь от диэлектрических поверхностей, частично поляризуется в плоскости отражения. Угол, характеризующий полную поляризацию, называют углом Брюстера.
Посмотрим на какую либо бликующую поверхность через поляризатор. Вращая поляризатор, мы увидим, что блики на некоторых предметах при определенном повороте будут исчезать. Это связано с тем, что свет, отразясь от поверхности, оказывается поляризованным в плоскости отражения (например, горизонтальной), а поляризатор пропускает только вертикально поляризованный свет, в итоге отраженный от поверхности свет не проходит.

На анимации видно, что при определенном угле поворота свет от лампы, отраженный поверхностью стекла, полностью отсекается поляроидом, так как при отражении он поляризовался в определенной плоскости:

Профессиональные полярископы используют также для определения минералов оценки качества драгоценных камней.
Это — снимок на просвет тонкого (0.03 мм) среза горной породы (шлифа), сделанный со скрещенными поляризаторами. Главное «действующее лицо» — зерно ортопироксена (этот минерал обычен в породах, образовавшихся при довольно высоких давлениях):

Источники:
http://licrym.org/index.php/Поляризованный_свет
http://how-make.ru/publ/samodelki_p…sveta/6-1-0-637

Дополнительно:
Цветной мир прозрачных вещей (Наука и Жизнь)
Справка по поляриметрии

Оригинал записи и комментарии на LiveInternet.ru

Поляризованный свет | Журнал Популярная Механика

Поляризованный свет, свойства которого давно используются в промышленности и науке, в XXI веке облюбовали художники и фотографы. Чтобы оказаться на пике современного искусства, для начала хватит пары специальных фильтров, рулона целлофана, ножниц и клея.

Яркие, красочные картины, которые вы видите на этой странице, принадлежат перу художницы Остин Вуд-Комароу. Точнее, не перу — в этих работах нет ни капли краски. Мало того, все материалы, из которых они сделаны, абсолютно прозрачны и бесцветны. Такая картина называется полаж (polage) — это сочетание двух слов: поляризация и коллаж. Необычайно яркие, чистые, насыщенные цвета, которые вы видите на картине, — результат взаимодействия источника света, двух поляризационных фильтров и расположенного между ними в несколько слоев преломляющего свет материала. Эти цвета — ближайшие родственники радуги. Полаж — не статичное изображение. Один из поляризационных фильтров постоянно вращается, заставляя цвета картины изменяться и превращая прозрачный витраж в живой переливающийся калейдоскоп. Остин работает в изобретенной ей технике полажа давно — с 1967 года. Сегодня творческие эксперименты с поляризованным светом, будь то создание коллажей или фотосъемка выращенных кристаллов, стремительно набирают популярность и завоевывают репутацию искусства XXI века.

Ломая поверхность (Breaking The Surface) Ломая поверхность (Breaking The Surface) Размер: 158х158 см. Работа подсвечивается четырьмя люминесцентными лампами изнутри. В отличие от других картин Остин, у нее нет вращающегося верхнего поляризационного фильтра. Зритель может сам использовать фильтр как ему будет угодно.

Легкая теория

Свет, излучаемый обычными источниками, например солнцем, электрической лампочкой или свечкой, представляет собой совокупность электромагнитных волн, вектор электрической напряженности которых колеблется в самых разных плоскостях. Такой свет называется неполяризованным. Свет, в котором этот вектор колеблется только в одной плоскости, называется линейно поляризованным. Его можно получить, установив на пути пучка поляризационный фильтр. Если вслед за первым поляризационным фильтром установить еще один, свет сможет преодолеть их только в том случае, если плоскости поляризации обоих фильтров будут параллельны. Если же ориентировать фильтры перпендикулярно, свет пройти не сможет.

Свойства поляризационного фильтра давно используются в фотографии и в быту. К примеру, отраженный на границе двух прозрачных сред свет всегда частично поляризован, поэтому поляризационный фотофильтр эффективно нейтрализует яркие блики. Поляризованные линзы в солнцезащитных очках помогают автолюбителям справиться со слепящим блеском мокрого асфальта, а лыжникам и сноубордерам — с отраженным от снега солнечным светом. Наконец, на эффекте поляризации работают современные ЖК-экраны: жидкие кристаллы, поляризующие свет, меняют свое положение относительно поляризующей подложки, тем самым регулируя яркость каждой точки. Именно свойству кристаллов поляризовать свет мы и обязаны повсеместным использованием поляризации. Большинство поляризационных фильтров и пленок представляют собой слой ацетилцеллюлозы, содержащий большое количество мелких кристаллов, правильно ориентированных в момент изготовления фильтров с помощью электрического поля.

Мастер-класс для очкариков Мастер-класс для очкариков Вы можете последовать примеру Остин Вуд-Комароу и самостоятельно поэкспериментировать с аппликациями в поляризованном свете. Для начала придется раздобыть собственно поляризационную пленку. Она имеется в продаже для лабораторных нужд. Кроме пленки понадобится пара стекол, фоторамка и лампа. Итак, первое стекло будет служить предметным столом. Под ним следует разместить лампу, а на него положить поляризационную пленку. Второе стекло вместе со второй пленкой поместите в рамку — получится удобный в использовании верхний фильтр, который можно класть на картину сверху и поворачивать. Начните эксперимент с простого смятого целлофана — вы удивитесь, насколько причудливые разноцветные картины он может создавать благодаря наложениям и внутренним напряжениям. Можно также использовать очки с поляризованными линзами для предварительного просмотра полученных картин. Кстати, напряжения (натяжение, сжатие) прозрачных материалов ярко окрашиваются в поляризованном свете, и этот эффект уже давно используют в промышленности для дефектоскопии и анализа напряжений в прозрачных материалах.

Прозрачные вещества бывают оптически изотропными и анизотропными. Оптические свойства (показатель преломления, степень поглощения, дисперсия) изотропных веществ не зависят от направления распространения света. К таким веществам относятся аморфные вещества (например, стекло), а также кристаллы с кубической кристаллической решеткой.

Самый красивый конструктор в мире: модели для перфекциониста

Оптические характеристики анизотропных кристаллов зависят от направления распространения света, его длины волны и поляризации. Разные коэффициенты поглощения в зависимости от длины волны и направления поляризации приводят к плеохроизму — различной окраске кристаллов при рассмотрении с различных направлений. Скажем, кристалл апатита кажется на просвет светло-желтым вдоль оптической оси (осевая окраска) и зеленым перпендикулярно к ней (базисная окраска).

Во многих кристаллах наблюдается также двойное лучепреломление — разложение света на два пучка, поляризованные в перпендикулярных направлениях. В сочетании с дисперсией (зависимостью показателя преломления от длины волны) это приводит к различной окраске кристаллов при наблюдении в поляризованном свете.

Художница в темных очках

Итак, Остин не работает с кистью. Ее главный рабочий инструмент — острый резак, которым она вырезает фигуры из листов прозрачного целлофана. Этот прозрачный материал обладает оптической анизотропией — при изготовлении пленки из вискозы ее растягивают и длинные молекулы выстраиваются в цепочки.

Самый красивый конструктор в мире: модели для перфекциониста

Мольберт Остин — световой стол, дающий равномерное освещение по всей площади, и разложенная на нем поляризационная пленка. После завершения работа будет накрыта еще одним поляризационным фильтром, и ее можно будет увидеть невооруженным глазом. В процессе создания картины Остин работает в очках с поляризационными линзами. А для непосвященного зрителя незаконченный поляризационный коллаж выглядит как абсолютно белый лист.

Остин выкладывает фигуры на столе, подбирая количество слоев целлофана для каждого рисунка. От количества слоев зависит направление поляризации прошедшего света и, соответственно, цвет художественного элемента. Для одной работы Остин вырезает сотни, а то и тысячи фигур.

Направленный свет Направленный свет Фотографии наглядно демонстрируют, как бесцветный кристалл фторапатита, размещенный между двумя фильтрами с перпендикулярными плоскостями поляризации, обретает яркую разнообразную окраску.

Готовая работа Остин Вуд-Комароу представляет собой расположенные друг над другом световую подложку, нижнюю поляризационную пленку, собственно аппликацию из многослойного целлофана и верхнюю поляризационную пленку. Работы Остин не бывают статичными. К примеру, верхний фильтр может приводиться в движение электродвигателем со скоростью примерно два оборота в минуту. Зрителю предлагается наблюдать, как плавно, синхронно и причудливо меняются элементы картины, переливаясь всеми цветами радуги. Некоторые работы Остин оставляет без верхнего фильтра, чтобы зрители могли увидеть, как выглядит абсолютно прозрачная аппликация. Благодаря разному количеству слоев целлофана на разных элементах графики эти работы приобретают эффектный рельеф. Насладившись первозданной красотой, зритель может взять в руки поляризационный фильтр и полюбоваться полноцветным полажем, поиграть с цветами и формами, перемещая и поворачивая инструмент.

Работы Остин входят в постоянную экспозицию Музея науки в Бостоне, Музея естественной истории и науки в Альбукерке, Городка науки и индустрии в Париже. Небольшие красочные полажи Остин продает через интернет. Их можно посмотреть на ее сайте


В лучах компьютера

Микроскопические кристаллы — вовсе не единственные предметы, которые неплохо смотрятся в поляризованном свете. Вы вполне можете поэкспериментировать с макрообъектами, для съемки которых не нужен микроскоп. Понадобится лишь фотоаппарат с поляризационным фильтром и источник поляризованного света. Классические варианты таких источников — это лампа, закрытая поляризационной пленкой, или проектор для диафильмов с фильтром от фотоаппарата. Для начала в качестве источника света отлично подойдет жидкокристаллический монитор. Просто «закрасьте» экран белым цветом — и получите отличную лампу, в лучах которой простая коробочка от компакт-диска в ярких красках расскажет вам о своих внутренних напряжениях.

Кристаллическая живопись

Модное увлечение современных фотографов — съемка кристаллов в поляризованном свете — использует тот же принцип взаимодействия кристалла и двух фильтров. Только в этом случае художником выступает сама природа. Кристаллы разного размера и формы предстают перед нами в самых неожиданных раскрасках. При этом двух одинаковых кристаллов, а значит, и двух одинаковых фотографий не существует в природе.


Как вырастить кристаллы

Направленный свет

Это достаточно несложный процесс. Для него понадобится: вода, вещество, из которого мы будем выращивать кристаллы (подойдут соль, алюмокалиевые квасцы или медный купорос), а также отрезок нити, кусок проволоки и открытая емкость, например, стеклянная банка или стакан.
Сначала нужно приготовить слегка перенасыщенный раствор вещества в воде. Например, медного купороса (пятиводного сульфата меди) — он имеет красивый синий цвет и кристаллы ромбической формы. Для этого слегка подогреем воду и начнем добавлять туда купорос, пока он не перестанет растворяться. После этого отделим чистый раствор от осадка, перелив его в банку или стакан. Положим сверху кусок проволоки в качестве перекладины, к которой привяжем нитку с «грузилом» (например, маленькой гайкой), погруженным в раствор. Поставим банку в теплое место. Через несколько дней часть воды испарится, и на нитке и гайке образуется множество мелких кристаллов. Постепенно они растут (возможно, в банку придется долить насыщенный раствор). Если хочется вырастить один большой кристалл, можно счистить лишние кристаллы с нити, оставив лишь один в качестве «затравки», и затем продолжить выращивание. За пару недель можно вырастить кристалл размером в несколько сантиметров.

Фотосъемка кристаллов в поляризованном свете — технически сложный вид фотографии. Прежде всего, для нее потребуется микроскоп с адаптером для фотоаппарата и собственно камера с поляризационным фильтром (или поляризационный микроскоп). Осветительную лампочку для препарата тоже придется оснастить фильтром. Самое сложное — раздобыть кристаллы, пригодные для съемки. Они должны тонким слоем покрывать поверхность предметного стекла.

Направленный свет

Кристаллы можно получить выпариванием раствора или охлаждением расплава. В первом случае капельку насыщенного раствора вещества (это может быть поваренная соль или медный купорос) наносят на предметное стекло, накрывают другим стеклом и оставляют на несколько часов. Во втором случае твердое вещество (например, лимонную кислоту) кладут на стекло, которое в свою очередь нагревают на утюге или плите. Расплавившееся вещество накрывают другим стеклом. Важно выбрать момент, когда вещество уже стало жидким, но в нем еще не появились пузырьки.

Кристаллы могут изменять свою форму и структуру в течение последующих нескольких дней или даже недель. С ними можно проводить массу экспериментов — смешивать соли или сами кристаллы, выкладывать на предметном стекле разные формы, ломать и царапать препарат в поисках новых граней. Количество разнообразных фотографий ограничено лишь фантазией и терпением фотографа.

Статья «Красками из радуги: как рисовать поляризованным светом» опубликована в журнале «Популярная механика» (№2, Февраль 2009).

Наноструктурированное поляризованное стекло и способ его получения

Изобретение относится к области оптического материаловедения, в частности к наноструктурированному поляризованному стеклу и способу его получения. Изобретение позволяет создавать стекло с квадратичной оптической восприимчивостью, повышенной до 9,0±0,5 пм/В, которое может быть использовано в качестве активного материала линейных электрооптических преобразователей. Наноструктурированное поляризованное стекло имеет следующее соотношение компонентов, мол.%: Na2O 22-25, Nb2O5 25-30, SiO2 остальное. Способ получения стекла включает двухступенчатую термообработку и последующую поляризацию в постоянном электрическом поле при повышенной температуре. Термообработку проводят при температуре 640-645°С в течение 11-12 ч и затем при температуре 670-675°С в течение 15-20 мин. Затем термообработанный образец в виде плоскопараллельной пластины толщиной 0,9-1,1 мм подвергают поляризации при температуре 320-330°С в постоянном электрическом поле, направленном перпендикулярно пластине под напряжением 0,8-1,5 кВ в течение 10-15 мин, с последующим охлаждением в присутствии того же электрического поля. 2 н.п. ф-лы.

 

Изобретение относится к области оптического материаловедения, в частности к наноструктурированному поляризованному стеклу и способу его получения. Это стекло может быть использовано в качестве активного материала линейных электрооптических преобразователей в диапазоне 400-1100 нм.

Известен способ формирования долгоживущей квадратичной оптической восприимчивости в стеклах с помощью их поляризации в электрическом поле при повышенной температуре с последующим охлаждением под полем, что позволяет «заморозить» наведенное в объеме стекла внутреннее электрическое поле и вызванную им анизотропию свойств. Изначально этот способ был разработан для кварцевого стекла [United States Patent 5239407 «Method and apparatus for creating large second-order nonlinearities in fused silica»].

Также известен способ получения наноструктурированных стекол, в которых возможна генерация второй оптической гармоники за счет формирования в их объеме наноразмерных кристаллов путем термообработки по соответствующему режиму, предложенный для стекла состава 25K2О-25Nb2О5-50SiО2, термообработанного при температуре 695°С в течение 24 часов и показавшего величину генерации второй гармоники в 1,3 от порошкового эталона б-кварца [Sigaev V.N., Stefanovich S.Yu., Champagnon В., Gregora I., Pernice P., Aronne A., LeParc R., Sarkisov P.D., Dewhurst C. Amorphous nanostructuring in potassium niobium silicate glasses by SANS and SHG: a new mechanism for second-order optical non-linearity // J. Non-Cryst. Solids, — 2002. — V. 306. — P. 238-248]. Недостатком этого стекла является низкая величина квадратичной нелинейности в связи с хаотической ориентацией сформированных нанокристаллов.

Известен патент на группу стекол щелочно-алюмоборосиликатной системы с рядом добавок, пригодных для формирования квадратичной оптической восприимчивости путем поляризации при повышенной температуре [United States Patent 7285510 «Glass composition for poling and glass functional product containing the same»].

В работе [M.Dussauze, E.Fargin, M.Lahaye, V.Rodriguez, F.Adamietz. Large second-harmonic generation of thermally poled sodium borophosphate glasses. Opt. Express, 2005, v.l3, p.4064-4069], в однородном стекле состава Na10P8,5B1,5Nb15О65 с помощью поляризации при повышенной температуре была создана квадратичная оптическая восприимчивость 5 пм/В в слое толщиной 5 мкм, что на сегодня является максимальным значением квадратичной оптической восприимчивости, полученным в оксидных стеклах с помощью поляризации при повышенной температуре. Недостатком этого стекла является низкая термостабильность квадратичной нелинейности, обусловленная существенным увеличением подвижности катионов Na+, с ростом температуры. Учитывая, что согласно [М.Dussauze, E.Fargin, M.Lahaye, V.Rodriguez, F.Adamietz. Large second-harmonic generation of thermally poled sodium borophosphate glasses. Opt. Express, 2005, v.l3, p.4064-4069] квадратичная нелинейность в стекле возникает за счет стабилизации возникших под действием электрического поля структурных изменений в стекле при его охлаждении, то при повторном нагреве до температур, сопоставимых с поляризацией (200-300°С), квадратичная нелинейность быстро упадет до нуля.

Наиболее близким к данному изобретению являются поляризованное наноструктурированное стекло и способ его получения, описанные в работе Комацу и др. [Tamagawa N., Benino Y., Fujiwara Т., Komatsu Т. Thermal poling of transparent TeО2-based nanocrystallized glasses and enhanced second harmonic generation // Opt. Comm. — 2003. — V. 217. — P. 387-394], где впервые тепловая поляризация была применена к стеклам, в которых путем термообработок уже создана нанокристаллическая структура. При этом поляризовались и однородные образцы, так и наноструктурированные, содержащие нанокристаллы неиденифицированной искаженной кубической фазы. В указанной работе исследовалось стекло системы 12К2О·15Nb2O5·68ТеO2·2МоО3. Данное стекло подвергалось двухступенчатой термообработке по режиму 375°С — 5 часов +415°С — 2 часа. Поляризующее напряжение составляло 2,0 кВ, температура поляризации — 240°С, длительность — 40 мин. Было показано, что сигнал генерации второй гармоники несколько увеличивается как относительно сигнала поляризованного однородного стекла данного состава, так и относительно неполяризованного наноструктурированного стекла. При этом значения квадратичной оптической нелинейности были невелики, оценивались в сравнении с кристаллическим кварцем и, по всей видимости, не превышали 0,4 пм/В. Термостабильность полученной нелинейности не оценивалась.

Основным недостатком прототипа является низкая квадратичная оптическая восприимчивость, которая существенно оказывается меньше, чем у известных нелинейно-оптических кристаллов (например, LiNbO3, KNbO3). В связи с указанными недостатками данное стекло не использовалось в технологических приложениях, несмотря на гораздо меньшую себестоимость стекла по сравнению с нелинейно-оптическими кристаллами.

Задачей предлагаемого изобретения является создание стекла с повышенными квадратичной оптической восприимчивостью и термостабильностью.

Поставленная задача решается наноструктурированным поляризованным стеклом, включающим щелочной оксид, оксид ниобия и стеклообразующий оксид, причем в качестве щелочного оксида используется Na2O, в качестве стеклообразующего оксида SiO2 при следующем соотношении компонентов, мол.%:

Na2O22-25
Nb2O525-30
SiO2остальное

Поставленная задача также решается способом получения наноструктурированного поляризованного стекла, включающего двухступенчатую термообработку и последующую поляризацию в постоянном электрическом поле при повышенной температуре, причем термообработку проводят при температуре 640-645°С в течение 11-12 ч и затем при температуре 670-675°С в течение 15-20 мин, далее полученный термообработанный образец в виде плоскопараллельной пластины толщиной 0,9-1,1 мм подвергают поляризации при температуре 320-330°С в постоянном электрическом поле, направленном перпендикулярно пластине под напряжением 0,8-1,5 кВ в течение 10-15 мин, с последующим охлаждением в присутствии того же электрического поля.

Ряд ниобийсодержащих стекол был подвергнут термообработкам для формирования нанокристаллической структуры и последующей поляризации при повышенной температуре.

Стекла в системе Na2O-Nb2O5-SiO2 были получены варкой шихты, состоящей из химически чистых Nа2СО3, Nb2O5 и SiO2, в течение 30 мин при температурах 1300-1400°С, после чего расплав закаливался прессованием между стальными плитами в виде плоскопараллельных пластин, которые далее шлифовались до толщины 0,9-1,1 мм и полировались. Изучались составы с содержанием оксидов натрия и ниобия, близким к единице. В таких составах на начальных стадиях кристаллизации, которые еще не вызывают заметного ухудшения прозрачности, может быть выделена в качестве единственной кристаллической фазы антисегнетоэлектрическая фаза NaNbO3, способная проявлять сегнетоэлектрические свойства при некотором искажении структуры [Borelli N.F. Electro-optic effect in transparent niobate glass-ceramic systems // J.Appl. Phys. — 1967. — V.38. — N.11. — P.4243-4247], что может быть реализовано в стеклах.

Составы с содержанием SiO2 менее 45 мол.% имели повышенную склонность к кристаллизации и низкую механическую прочность за счет быстрой закалки, что не позволяло изготовить качественные поляризованные образцы. Составы с повышенным содержанием SiO2 (>53 мол.%) оказались менее перспективны для формирования квадратичной оптической восприимчивости за счет уменьшения содержания остальных компонент и прежде всего высокополяризуемых полиэдров ниобия.

Для поляризации были подготовлены образцы однородных стекол и стекол, предварительно термообработанных по одноступенчатому (либо только в зоне зародышеобразования кристаллов при 640-645°С, либо только на нижней границе зоны роста кристаллов в начале первого экзотермического пика на кривой ДТА при 670-675°С) или по двухступенчатому режиму (в обеих указанных температурных зонах). Длительность термообработки на первой ступени варьировалась от 3 до 24 часов, на второй ступени — от 10 мин до 1 часа. Рентгенофазовый анализ показывает наличие в большинстве образцов зародышей кристаллов (1-2 слабых пика на дифракционной кривой) после термообработки на первой ступени и наличие кристаллической фазы NaNbO3 после термообработки на второй.

Поляризация проводилась в специальной установке между электродами из полированной стали или латуни. Однородные образцы обладали более высокой проводимостью по сравнению с термообработанными и характеризовались более низкой температурой пробоя при одинаковом напряжении на электродах.

Квадратичная оптическая восприимчивость рассчитывалась из измеренных кривых Мейкера — зависимостей интенсивности второй гармоники от угла падения лазерного пучка (Нd3+:YАG-лазер, длина волны 1064 нм).

Пример 1

Стекло состава 25 мол.% Na2O, 30 мол.% Nb2O5, 45 мол.% SiO2 было подвергнуто двухступенчатой термообработке при температуре 640°С в течение 12 ч и затем при температуре 675°С в течение 20 мин, после чего термообработанный образец в виде плоскопараллельной пластины толщиной 0,95 мм был подвергнут поляризации на воздухе при температуре 330°С в постоянном электрическом поле, направленном перпендикулярно пластине, в течение 15 мин. Электрическое поле в образце было с помощью стальных электродов, плотно приложенных с двух сторон к образцу, на которые подавалось постоянное напряжение 1,5 кВ. После этого образец был охлажден со скоростью 20°С/мин в присутствии того же электрического поля. Напряжение было отключено при температуре 50°С.

Анализ генерации второй гармоники показал, что в образце возникла квадратичная оптическая восприимчивость величиной 9,0±0,5 пм/В в приповерхностном слое толщиной около 5 мкм со стороны анода. При этом прозрачность образца относительно исходного однородного стекла уменьшилась не более чем на 5% в диапазоне 400-1100 нм. Термостабильность образца проверялась термообработкой в течение 24 часов при температуре 250°С. За это время квадратичная оптическая восприимчивость не изменилась. Через 10 месяцев нахождения при комнатной температуре квадратичная оптическая восприимчивость также осталась стабильной.

Пример 2

Стекло состава 22 мол.% Na2O, 25 мол.% Nb2O5, 53 мол.% SiO2 было подвергнуто двухступенчатой термообработке при температуре 640°С в течение 12 ч и затем при температуре 675°С в течение 15 мин, после чего термообработанный образец в виде плоскопараллельной пластины толщиной 1,0 мм был подвергнут поляризации на воздухе при температуре 320°С под постоянным напряжением 1,3 кВ в течение 15 мин с помощью стальных электродов, после чего образец был охлажден со скоростью 20°С/мин под тем же напряжением. Анализ генерации второй гармоники показал, что в образце возникла квадратичная оптическая восприимчивость величиной 4,2±0,4 пм/В в приповерхностном слое толщиной около 5 мкм со стороны анода. Термостабильность образца проверялась термообработкой в течение 24 часов при температуре 300°С. За это время квадратичная оптическая восприимчивость уменьшилась на 10%. Последующая термообработка в течение 24 часов при температуре 250°С не изменила величину квадратичной оптической восприимчивости.

Пример 3

Стекло состава 25 мол.% Na2O, 25 мол.% Nb2O5, 50 мол.% SiO2 было подвергнуто двухступенчатой термообработке при температуре 645°С в течение 12 ч и затем при температуре 670°С в течение 10 мин, после чего термообработанный образец в виде плоскопараллельной пластины толщиной 0,9 мм был подвергнут поляризации на воздухе при температуре 325°С под постоянным напряжением 1,2 кВ в течение 10 мин с помощью стальных электродов, после чего образец был охлажден со скоростью 20°С/мин под тем же напряжением. Анализ генерации второй гармоники показал, что в образце возникла квадратичная оптическая восприимчивость величиной 2,8±0,3 пм/В в приповерхностном слое толщиной около 4 мкм со стороны анода. Оптическое пропускание образца уменьшилось относительно исходного однородного стекла не более чем на 2% в диапазоне 400-1100 нм.

Пример 4

Стекло состава 25 мол.% Na2O, 30 мол.% Nb2O5, 45 мол.% SiO2 было подвергнуто двухступенчатой термообработке при температуре 645°С в течение 11 ч и затем при температуре 675°С в течение 10 мин, после чего термообработанный образец в виде плоскопараллельной пластины толщиной 1,1 мм был подвергнут поляризации на воздухе при температуре 325°С под постоянным напряжением 1,0 кВ в течение 15 мин с помощью стальных электродов, после чего образец был охлажден со скоростью 20°С/мин под тем же напряжением. Анализ генерации второй гармоники показал, что в образце возникла квадратичная оптическая восприимчивость величиной 0,6±0,1 пм/В в приповерхностном слое толщиной около 5 мкм со стороны анода.

Пример 5

Стекло состава 25 мол.% Na2O, 30 мол.% Nb2O5, 45 мол.% SiO2 было подвергнуто двухступенчатой термообработке при температуре 645°С в течение 11 ч и затем при температуре 675°С в течение 10 мин, после чего термообработанный образец в виде плоскопараллельной пластины толщиной 1,1 мм был подвергнут поляризации на воздухе при температуре 325°С под постоянным напряжением 0,8 кВ в течение 15 мин с помощью стальных электродов, после чего образец был охлажден со скоростью 20°С/мин под тем же напряжением. Анализ генерации второй гармоники показал, что в образце возникла квадратичная оптическая восприимчивость величиной 0,12±0,03 пм/В в приповерхностном слое толщиной около 4 мкм со стороны анода.

Показано, что наибольшей квадратичной оптической нелинейностью обладают стекла, термообработанные по двухступенчатой схеме, на порядок и более превосходя нелинейность однородных поляризованных стекол того же состава. При этом увеличение времени термообработки на первой ступени до 12 часов влекло за собой увеличение сигнала второй гармоники, при дальнейшем продлении термообработки нелинейность оставалась практически одинаковой. Увеличение времени термообработки на второй ступени вело к увеличению квадратичной нелинейности образца, однако сопровождалось быстрой потерей прозрачности за счет увеличения кристаллов в объеме стекла до размеров, близких к длине световой волны, поэтому оптимальное время термообработки на второй ступени составило 20 минут, что соответствовало уменьшению прозрачности образца примерно на 3%.

Наиболее высокое значение квадратичной оптической восприимчивости, полученное авторами в результате поляризации наноструктурированных стекол, составляет 9,0±0,5 пм/В в приповерхностном слое образца толщиной 4-5 мкм. Соответствующий выбор поляризующего напряжения при неизменных прочих параметрах режима позволяет регулировать наведенную анизотропию, получая образцы с требуемой квадратичной оптической восприимчивостью в пределах от 0 до 9 пм/В.

При комнатной температуре квадратичная нелинейность наноструктурированных поляризованных образцов оставалась постоянной в течение не менее 10 месяцев. Термостабильность образцов проверялась термообработкой в течение 24 часов при температурах 250°С и 300°С. В первом случае квадратичная оптическая восприимчивость оставалась постоянной в пределах ошибки измерения, во втором — уменьшилась на 10%.

Таким образом, заявляемое наноструктурированное поляризованное стекло в 1,8 раза превосходит максимальную квадратичную оптическую нелинейность, полученную в поляризованных оксидных стеклах, как однородных, так и наноструктурированных, а также обладает принципиально более высокой термостабильностью по сравнению с однородными поляризованными стеклами. Оно обладает хорошей прозрачностью в области 400-100 нм и может быть использовано в оптоэлектронных устройствах оптического и ближнего ИК-диапазонов.

1. Наноструктурированное поляризованное стекло, включающее щелочной оксид, оксид ниобия и стеклообразующий оксид, отличающееся тем, что в качестве щелочного оксида используется Na2O, в качестве стеклообразующего оксида — SiO2, при следующем соотношении компонентов, мол.%:

22-25Na2O
25-30Nb2O5
остальноеSiO2

2. Способ получения наноструктурированного поляризованного стекла, включающий двухступенчатую термообработку и последующую поляризацию в постоянном электрическом поле при повышенной температуре, отличающийся тем, что термообработку проводят при температуре 640-645°С в течение 11-12 ч и затем при температуре 670-675°С в течение 15-20 мин, а затем термообработанный образец в виде плоскопараллельной пластины толщиной 0,9-1,1 мм подвергают поляризации при температуре 320-330°С в постоянном электрическом поле, направленном перпендикулярно пластине под напряжением 0,8-1,5 кВ в течение 10-15 мин с последующим охлаждением в присутствии того же электрического поля.

Отправить ответ

avatar
  Подписаться  
Уведомление о