Удаление окалины – что делать в первую очередь, первая помощь, как извлечь инородное тело из глаза промыванием, запрещенные действия

Методы удаления окалины с поверхности металла :: Технология металлов

Неудаленная окалина, всякого рода загрязнения, плохая от­делка поверхности деталей резко снижают коррозионную стой­кость металла. Поэтому с поверхности деталей следует пол­ностью удалять даже следы окалины, а также мельчайшие ча­стички железа.

В практике применяют химические, электрохимические и ме­ханические способы удаления окалины.

К химическим и электрохимическим способам относятся травление, пассивирование и электролитическое полирование, а к механическим — галтовка, крацевание, шлифование и поли­рование.

Коррозионная стойкость полированной поверхности значи­тельно выше, чем шлифованной или травленой (непассивированной). Поэтому в процессе отделки деталей из нержавеющих сталей следует добиваться высокой чистоты поверхности и пол­ного сглаживания мельчайших неровностей.

Аустенитные хромоникелевые стали хуже шлифуются и по­лируются, чем хромистые стали. Многие детали, применяемые в машиностроении, подлежат отделке. Поэтому с двухфазных сталей типа 08Х22Н6Т окалину целесообразно удалять механи­ческими способами, так как при химических в результате вы­травливания ферритной фазы поверхность металла становится шероховатой и ее дополнительно требуется шлифовать и поли­ровать.

Травление и пассивирование.

Процесс травления состоит из следующих операций: обработки в щелочном рас­плаве, промывки в холодной проточной воде, травления в рас­творе кислоты, промывки, пассивирования, промывки, протирки и сушки.

При обработке в щелочном расплаве окись хрома взаимо­действует со щелочью:

Сr2O3 + 2NaOH → 2NaCrO2 + Н2O.

Хромит натрия при окислении селитрой переходит в легко растворимый в воде хромат натрия:

2NaCrO2 + 3NaN

О3 + 2NaOH    2Na2CrO4 + 3NaNO3 + H2O.

Входящие в состав окалины окислы железа и хромит железа окисляются селитрой:

2FeO + NaNO3 → Fe2O3 + NaNO3;

2Fe304 + NaNO3  →  3Fe2O3 + NaNO2;

2FeO — Cr2O3 + NaNO3 → Fe2O3 + 2Cr2O3 + NaNO3.

Эти химические реакции вызывают изменение структуры окалины, в результате чего она легко разрушается.

Щелочной расплав состоит из 60—70% едкого натра, 25— 35 % натриевой селитры и 5 % поваренной соли. Металл вы­держивают в расплаве 5—25 мин при 450—500 °С.

Детали перед загрузкой в расплав тщательно просушивают. В процессе обработки металла в расплаве окалины частично отслаивается и оседает в виде шлама на дно ванны. Остав­шуюся окалину после промывки удаляют травлением в рас­творе, содержащем 10—18% серной кислоты (плотность 1,84) с добавкой 3—8 % поваренной соли, или в растворе, содержа­щем 20% серной кислоты, 1,5% азотнокислого натрия и 2,5% поваренной соли. Продолжительность травления 3—5 мин, тем­пература раствора 70—80 °С. При травлении хромистых не­ржавеющих сталей типа 1X13, Х17, Х25 и Х27 температура рас­твора должна быть 50—60 °С.

Травильный раствор корректируют, добавляя серную кис­лоту при уменьшении ее концентрации <11 %. Кислоту вводят в таком количестве, чтобы после тщательного перемешивания ее содержание в растворе составляло 18—22 %. Хлористый нат­рий и селитру добавляют в тех случаях, когда поверхность про­травленного металла приобретает серый цвет.

Двухфазные стали типа ЭИ811 рекомендуют травить в 15— 18%-ном растворе соляной кислоты при 60—70 °С в течение 3—10 мин.

В случае появления рыхлой отслаивающейся пленки на по­верхности металла двухфазных сталей (ЭП53, ЭП54) после травления в соляной кислоте в травильный раствор рекомен­дуют вводить 0,9 % ингибитора ПБ-8/2. Двухфазные стали можно также травить в сернокислотном растворе следующего состава: 18 %-ная H2SO4 + 3 % NaCl + 0,015% ЧМ (травильная присадка) при температуре раствора 80 °С в течение 5— 10 мин.

После травления стали подвергают пассивированию в 3— 5 %-ном растворе азотной кислоты при 40—50 °С в течение 3— 5 мин. Для пассивирования хромистых сталей применяют тот же раствор, но рекомендуют вводить в него дополнительно 1—2 % бихромата натрия. После пассивирования поверхность полуфабрикатов и деталей становится серебристо-матовой, чи­стой, в результате значительно повышается коррозионная стой­кость металла.

Во избежание в процессе пассивирования почернения поверх­ности металла следует составлять пассивирующий раствор на чистой воде, не содержащей хлоридов. Кроме того, для получе­ния самой пассивной пленки с более высокими коррозионными свойствами промывные воды и щелочные растворы, применяемые при этом процессе, должны содержать минимальное количество хлоридов, а еще лучше не содержать их.

На машиностроительных заводах часто отсутствуют уста­новки с щелочными расплавами. В таких случаях для облегче­ния кислотного травления перед термической обработкой детали следует погружать в насыщенный раствор поваренной соли.

Во время термической обработки NaCl вступает во взаимо­действие с окислами металла и окалина, остывая, при малей­шем постукивании легко осыпается.

Окалина может удаляться с поверхности стали и без пред­варительного разрыхления в щелочном расплаве. Для этого применяют растворы следующего состава: 200—250 г/л азот­ной кислоты, 15—25 г/л фтористого натрия и 15—25 г/л хлори­стого натрия. Температура раствора комнатная, продолжитель­ность травления 15—90 мин.

Можно применять раствор с меньшей концентрацией компо­нентов: 100 г/л азотной кислоты и 4 г/л фтористого натрия при температуре раствора 50—60 °С. Для предварительного разрыхления толстой окалины можно использовать раствор (частей по объему):

Серная кислота (плотность 1,84) . . 6—8

Соляная кислота (плотность 1,19) . . 2—4

Вода    ……………100

Для получения блестящей, глянцевой поверхности металла применяют травильную смесь кислот, % (объемн.):

Соляная кислота    …..20      

Фосфорная кислота .   5

Азотная кислота    …..5

Вода     ……..70

Гидриднонатриевый метод травления применяют для удале­ния окалины с поверхности деталей из нержавеющих сталей различных марок, сплавов на основе титана, никеля и других металлов, не растворяющихся в щелочах.

Детали обрабатывают в расплавленной щелочи с добавкой 2% гидрида натрия (NaH), который образуется в травильной ванне при взаимодействии металлического натрия с водородом.

Окислы железа полностью восстанавливаются по реакции

4NaH + Fe3O4 = 3Fe + 4NaOH.

Окислы хрома восстанавливаются частично:

NaH +

Cr2O3 → 2CrO + NaOH.

Металл, загруженный в расплав, должен быть совершенно сухим, поэтому детали предварительно прогревают в печах при 300 °С. Продолжительность выдержки в расплаве (в зависи­мости от состояния окалины) составляет 5—20 мин, темпера­тура расплава 350—380 °С.

Восстановленная окалина, имеющая вид рыхлой губчатой массы, остается на поверхности деталей; ее удаляют с их по­верхности струйной промывкой холодной водой.

Для получения блестящей поверхности стальные детали после гидриднонатриевой обработки дополнительно травят 2—5 мин в 5—10 7о-ном растворе серной кислоты; детали из нержавеющей стали после травления дополнительно пассиви­руют в течение 1 мин в 5—10%-ном растворе азотной кислоты при 60—70 °С; детали из сплавов титана подвергают травле­нию в смеси азотной и плавиковой кислот; детали из сплава типа нимоник травят в смеси азотной кислоты и хлорного железа.

В лабораторных условиях без предварительного разрыхле­ния окалины для травления образцов из нержавеющей стали можно применять растворы следующего состава: 5 мл азотной кислоты (плотность 1,4), 45 мл соляной кислоты (плотность 1,19) и 50 мл воды. Температура раствора 60—70 °С, продол­жительность травления 5—10 мин. В процессе удаления ока­лины образцы металла несколько раз вынимают из травильного раствора, промывают водой и зачищают металлическими щет­ками (сделанными из нержавеющей проволоки).

Удалять окалину с поверхности нержавеющих сталей можно так называемым щелочным раствором перманганата.

В качестве раствора используют 50—100 г/едкого натра, 50—100 г/л перманганата калия. Температура раствора 80— 100 °С. Продолжительность 1—30 мин в зависимости от тол­щины окалины. При составлении раствора сначала растворяют в воде щелочь, затем вводят необходимое количество перман­ганата. После обработки металла в указанном растворе сле­дует промывка в воде и дополнительное травление в кислотных растворах. Считают более эффективной такую последователь­ность операции: травление в кислотах, обработка в щелочном растворе перманганата калия и повторное травление в кис­лотах.

Удаление окалины с металла объясняется объемными изме­нениями, происходящими при переходе низших окислов ме­талла в высшие. Так, например, на нержавеющих хромистых сталях окалина состоит из окислов трехвалентного хрома, ко­торые под действием перманганата окисляются до шестивалент­ного. Окисел шестивалентного хрома легко растворяется в ще­лочном растворе.

Поскольку перманганат калия является дорогим химика­том, процесс удаления окалины в этом растворе в производ­ственных условиях будет также неэкономичным.

Его можно применять для удаления окалины в лаборатор­ной практике.

Электролитическое травление нержавеющих сталей можно также проводить в 5—10%-ном растворе азотной кислоты при комнатной  температуре, продолжительность 10 мин. Катодная плотность тока 3—4 А/дм2. В качестве анодов применяют крем­нистый чугун, катодами служит нержавеющая сталь.

Детали с резьбой, а также детали, которые «после термиче­ской обработки нельзя механически зачищать и шлифовать, травят на аноде в растворе следующего состава: 100 мл серной кислота (плотность 1,84), 800 мл фосфорной кислоты (плот­ность 1,54), 100 г хромового ангидрида, 100 мл воды. Темпера­тура раствора 70—75 °С, плотность тока на аноде 70—75 А/дм2, продолжительность травления 5—10 мин (катодами служат свинцовые пластины).

Окислы, образующиеся на поверхности стали в процессе сварки, и травильный шлам можно удалять в 15—20%-ном растворе перекиси водорода. Продолжительность процесса 5—10 мин, температура раствора комнатная. Помимо травиль­ных качеств, раствор перекиси водорода обладает хорошими пассивирующими свойствами. Перекись водорода при взаимо­действии с окислами металлов быстро разлагается, в связи с чем значительно повышается ее расход, и травление в ука­занном растворе требует больших затрат.

Для удаления ржавых пятен, образующихся на изделиях в процессе хранения, можно применять 10%-ный раствор ли­моннокислого натрия.

Осветление стали Х18Н10Т с целью очистки поверхно­сти от цветов побежалости, окислов и неудаленного травиль­ного шлама можно осуществлять в 30%-ной перекиси водорода при температуре 55—65 °С или в смеси, состоящей из 25 мл/л 30%-ной перекиси водорода и 75 мл/л азотной кислоты (плот­ность 1,32) при температуре 20—60 °С. Скорость удаления тра­вильного шлама резко возрастает при повышении температуры растворов.

Осветление стали 10Х17Н13М2Т с целью удаления окислов после сварки металла  рекомендуют выполнять пастой следующего состава: 200 г/л h3SO4, 20 % NaCl и 400 г/л асбе­ста, а пассивацию сплава 06ХН28МДТ после шлифования металла — в 19%-ной серной кислоте, содержащей 0,1 % пе­рекиси водорода.

Анодное травление мелких деталей и образцов из аустенитных сталей типа Х18Н10Т проводят в хромовом электролите, содержащем 200—250 г/л хромового ангидрида и 2—2,5 г/л серной кислоты, при температуре 50—55 °С и анодной плотно­сти тока 540—50 А/дм2. Продолжительность травления 3— 10 мин. Катодами при этом служат свинцовые пластины. После травления следует промывка в воде. При наличии на поверх­ности нержавеющей стали травильного шлама применяют декапировку в 5—15%-ном растворе соляной кислоты с по­следующей промывкой, нейтрализацией остатков кислоты и сушкой.

Анодное травление можно также осуществлять в 10%-ном водном растворе серной кислоты при плотности тока 10— 20 А/дм2 в течение 2—10 мин. Температура комнатная. В каче­стве катодов применяют свинцовые пластины или пластины из нержавеющей стали.

Химическое травление.

Удалять окалину после тер­мической обработки с нержавеющих хромоникелевых сталей можно химическим травлением в водном растворе 4%-ной азотной кислоты (плотность 1,35), 36 %-ной соляной кислоты (плотность 1,19). Температура раствора 35—50 °С, продолжи­тельность травления 3—6 мин.

Травление пастами.

Данный вид очистки применяют для листового проката из двухслойной стали, например нержа­веющей стали Х18Н10Т и Ст3.

Травильную пасту приготовляют из 200—250 г/л h3SO4, 150—175 г/л NaCl и 15—20 г/л NaNО3. В раствор вводят из­мельченную огнеупорную глину до получения сметанообразной консистенции.

Пасту наносят кистью на поверхность коррозионностойких листов, затем их укладывают горизонтально и выдерживают в течение суток. После чего пасту смывают водой и биметалл травят по режиму для углеродистой стали в течение 10—15 мин, промывают, пассивируют и сушат.

Для слабого травления (удаления оксидов) рекомендуют насыщенные водные растворы сульфата меди, сильно подкис­ленные соляной кислотой. Для травления применяют также цар­скую водку (смесь концентрированных кислот): 3 ч. НС1 + 1 ч. HNО3.

Одновременное травление и окрашивание в темный цвет по­верхности нержавеющих сталей достигается в растворе, содер­жащем 250 см3 концентрированной НС1 и 750 мл воды, в кото­рый добавляют 50 г нитрата висмута и 50 г теллуристой кис­лоты. Для этих же целей (травление и окраска) можно использовать смесь, состоящую из концентрированного раствора 800 мл FeCl3 и концентрированной НС1 (20 мл).

Химическое клеймение деталей из стали типа Х18Н10Т про­водят в растворе следующего состава:

Клеймо наносят резиновым штампом, смачивая его о поду­шечку из листового асбеста или пористой резины. Раствор сле­дует хранить в стеклянной банке с притертой пробкой.

Электролитическое полирование.

Сущность этого способа заключается в анодной обработке поверхности металла в специальных  электролитах.  

Азотная кислота (плотность 1,4),    —  40мл

Соляная кислота (плотность 1,19),   —  40мл

Селен (металлический),    4г  

Оксид меди,   —   4г 

Вода,   —  100 мл    

Поверхность  металла сглаживается в результате растворения выступающих участков. При электролитическом полировании удаляются лишь мелкие шероховатости (второго порядка). Поэтому изделия после гру­бой обработки резцом ми изделия, имеющие глубокие впадины на поверхности (шероховатости первого порядка), перед элек­трополированием должны предварительно подвергаться меха­нической обработке и иметь поверхность, соответствующую 7—8-му классу чистоты обработки.

Электролитическое полирование может быть осуществлено в растворе, содержащем 45 % фосфорной кислоты, 40 % серной кислоты, 5 % хромового ангидрида и 10 % воды. Температура раствора 50—70 °С, плотность тока 30—60 А/дм2, продолжи­тельность полирования 10—15 мин. В качестве катодного ма­териала применяют свинец, а также в растворе: 20 % серной кислоты, 55 % лимонной кислоты, 25 % воды, температура рас­твора 80—85 °С, плотность тока 10—25 А/дм2, продолжитель­ность полирования 5—10 мин (катодом служат медные пла­стинки) .

Химическое полирование.

Для химического полиро­вания аустенитных сталей может быть применен раствор сле­дующего состава: 4 объема соляной кислоты, 1 объем азотной кислоты, 0,5 объема серной кислоты, 5 г/л уксусной кислоты, температура раствора 80—150 °С.

Для химического полирования хромистых и хромоникелевых нержавеющих сталей, а также углеродистых сталей гото­вят раствор фосфорной кислоты, который медленно нагревают до 250 °С, при этом фосфорная кислота частично переходит в пирофосфорную. Реакция продолжается 1,5 ч (ее окончание определяют по прекращению выделения газа). Затем кислоту быстро охлаждают и добавляют около 10% серной кислоты. Чем больше содержание углерода в стали, тем меньше добав­ляют кислоты. Полирование проводят при 200 °С в течение 1 —10 мин. После пассивирования, электролитического или хи­мического полирования необходима нейтрализация остатков кислоты на деталях, которую осуществляют в 1—3%-ном рас­творе кальцинированной соды с последующей промывкой и сушкой.

Дли химического полирования пружин из стали 12Х18Н10Т рекомендуют раствор следующего состава:

Температура раствора 65—70 °С, выдержка 5—30 мин. После электролитического (или химического)  полирования получают поверхность с высокой отражательной способностью,

Азотная кислота (плотность 1,4), мл    40

Соляная       (  плотность 1,19), мл    70

Серная           (  плотность 1,84), мл  230

Клей столярный, г/л       10

Хлористый натрий, г/л   5—6

Краситель кислотный черный, г/л   5—6

которая не загрязняется остатками полировальных веществ. Такому полированию подвергают, предварительно хорошо от­шлифованную поверхность. Вместе с тем электролитическое (и химическое) полирование имеет существенный недостаток: детали, подвергнутые сильной деформации, приобретают шеро­ховатую поверхность, а сварные швы, невидимые при механи­ческом полировании, резко выявляются.

Крацевание.

Крацевание применяют для удаления раз­рыхленного слоя окалины и шлама с поверхности изделий сложной конфигурации.

Операцию крацевания выполняют на крацевальных станках круглыми щетками из тонкой упругой нержавеющей стальной проволоки диаметром 0,1—0,4 мм. Частота вращения щеток 750—1000 мин-1.

Поверхность изделий во время крацевания смачивают 3— 5%-ным раствором кальцинированной соды или полировочной известью.

Галтовка.

Эту операцию осуществляют перед шлифова­нием для удаления с поверхности металла различных загряз­нений, травильного шлама, грубых неровностей и заусенцев.

Детали обкатываются совместно с абразивными полирую­щими материалами во вращающихся барабанах или колоколах с частотой вращения 30—60 мин-1.

Различают галтовку мокрую и сухую. В первом случае де­тали обрабатывают с абразивными материалами, к которым до­бавляют 2—3%-ный раствор соды, во втором —с сухими аб­разивными материалами.

Не допускается обработка деталей, выполненных из коррозионностойких сталей, шариками из обычной стали.

Гидроочистка.

К гидроочистке относятся гидрошлифова­ние и гидрополирование.

На большинстве установок гидроочистки все операций, за исключением загрузки и выгрузки деталей, механизированы.

Детали шлифуются и полируются в перфорированных бара­банах, при этом устраняется ручная отделка на войлочных кру­гах. Чистота поверхности повышается до 8—9-го класса.

Жидкостному шлифованию и полированию подвергают мелкие детали (массой до 500 г) после штамловки, литья, ме­ханической обработки с чистотой поверхности не ниже 4—6-го классов.

Сущность процесса гидроочистки заключается в обработке деталей вместе со шлифующими материалами, помещенными в шестигранный барабан. Последний погружают в ванну с ра­бочей жидкостью, где он вращается со скоростью 25—30 об/мин. При отделке хромистых сталей частота вращения барабана может быть увеличена до 50 мин-1.

При вращении барабана детали и шлифующий материал перемешиваются и взаимно притираются.  Барабан  с  отвер­стиями диаметром 3—5 мм выполнен из винипласта, ванна из стали Ст3 внутри облицована винипластом.

Все металлические детали крепления, привод форсунки, баки, мешалки, змеевики и сопла (при струйной подаче жидко­сти) должны быть выполнены из коррозионностойкой стали, пластмассы или стекла.

Установка должна быть предназначена специально для от­делки коррозионностойких сталей. Не допускается одновремен­ная загрузка деталей из обычных сталей.

В качестве рабочей жидкости применяют кипяченую воду, добавляя 0,1—0,2 % нейтрального мыла и 0,1—0,2 % кальцини­рованной соды. Температура раствора 25—45 °С.

При шлифовании в качестве абразивного материала исполь­зуют бой электрокорундовых кругов зернистостью 150—180. Барабан загружают из расчета 2 ч. (по массе) абразивного материала и 1 ч. (по массе) деталей.

При полировании применяют фарфоровый бой, иногда до­бавляют шарики из коррозионностойкой стали (Х17Н2 или Х18). Соотношение полирующих материалов и деталей в бара­бане примерно то же, что и при шлифовании.

В процессе жидкостного шлифования и полирования не до­пускается загрязнение раствора металлической пылью, ржав­чиной, а также применение в качестве абразивного материала наждака и других веществ, содержащих окислы железа.

Данный процесс обработки широко применяют на машино­строительных заводах легкой и пищевой промышленности при обработке точеных, литых и штампованных деталей различной конфигурации, изготовленных не только из коррозионностойких, но и из углеродистых сталей, а также меди, титана и их сплавов.

Шлифование и полирование.

Шлифование осуще­ствляют для предварительной подготовки поверхности металла перед полированием.

При шлифовании острорежущие грани зерен абразива сгла­живают крупные неровности на поверхности деталей, однако при этом остаются риски. Шлифование выполняют на станках с вращающимися кругами (главным образом фетровыми), на поверхность которых наклеивают абразивный материал.

Детали из коррозионностойких сталей перед шлифованием и механическим полированием следует декапировать в 5— 8%-ном растворе азотной кислоты для удаления всех следов, оставленных инструментом.

При шлифовании и полировании необходимо учитывать со­став стали, ее структуру и физико-химические свойства.

Аустенитные стали следует шлифовать с давлением образца на круг 3,0—7,5 МН/м2 (30—75 кгс/см2), дальнейшее увеличе­ние давления уменьшает чистоту поверхности металла. При шлифовании хромистых  (мартенситных)  сталей давление об­разца на круг не сказывается на чистоте поверхности и практи­чески может повышаться до 25 МН/м2 (250 кгс/см2). Шлифо­вание коррозионностойких сталей следует вести кругами с аб­разивным порошком, предварительно просаленным жировыми веществами.

Из абразивных материалов при шлифовании и полировании коррозионностойких сталей наиболее широко используют ко­рунд, содержащий 99 % А12О3. Для получении поверхности вы­сокого качества шлифование и полирование следует вести с большим числом переходов и последовательным применением абразивов соответствующих номеров.

Горячекатаный металл шлифуют кругами с тремя перехо­дами абразива № 60—80, 100—120, 150—200. Полируя холодно­катаный лист, обработку ведут с двумя переходами (№ 250 и 300).

При шлифовании камнями нужно чаще править круги (так как они быстро засаливаются) и применять интенсивное ох­лаждение. При чистовом полировании коррозионностойких ста­лей для получения зеркальной поверхности применяют войлоч­ные круги, а также круги, сшитые из дисков эластичной кожи и ткани.

Полирование устраняет неровности, которые остаются после шлифования, и поверхность металла приобретает зеркальный блеск.

Его осуществляют на том же оборудовании, что и шлифо­вание. При полировании коррозионностойких сталей применяют из­вестковые, алюминиевые и хромовые пасты. Наилучшими из хро­мовых паст являются пасты, состоящие из окиси хрома, так на­зываемые пасты ГОИ (различают грубые, средние и тонкие).

При шлифовании и полировании коррозионностойких сталей такие материалы, как наждак, содержащий до 35 % окиси же­леза, карборунд с небольшим количеством графита, крокус и железный сурик, применять нельзя. Окислы железа в пастах вызывают появление ржавчины, а графит науглероживает по­верхность деталей, что может сделать металл склонным к межкристаллитной коррозии. По этим же причинам не следует при­менять наждачную и особенно крокусную пасту.

Пассивность, а следовательно, и коррозионная стойкость кор­розионностойких сталей связаны не только с состоянием поверх­ности металла, но и со структурой. Поэтому для снятия наклепа и напряжений металл следует подвергать закалке. После термической обработки ока­лина должна быть полностью  удалена.  Однако  в   процессе межоперационного хранения на поверхности коррозионностой­ких сталей иногда образуются ржавые участки, которые необхо­димо удалить промывкой в 10%-ном растворе лимоннокислого натрия. Для очистки не следует применять металлические щетки из обычной углеродистой проволоки. Необходимо помнить, что любые частицы железа, остатки окалины, окислы после сварки могут вызвать образование ржавчины.

Обезжиривание и пассивирование.

После окон­чательной механической обработки с целью повышения корро­зионной стойкости деталей следует производить обезжиривание и пассивирование их с тщательной промывкой в горячей воде.

Обезжиривание (удаление жировых загрязнений) осуществ­ляют в одном из следующих растворов, г/л:

1. Na2CО3 или K2CО3   —  30—50

NaOH или КОН  — 10—20

Жидкое стекло или мыло    — 2—3

2. К2СО3 или Na2CО3    15—25

Na3PО4    — 15—25

NaOH     — 5—10

Жидкое стекло или мыло   — 2—3

Температура растворов 80—90 °С и выше.

Пассивирование — создание тонкой пленки окислов на по­верхности металла — происходит в результате его обработки в 5 %-ной азотной кислоте при температуре раствора 50—60 °С в течение 3—5 мин.

Покрытия.

На детали из нержавеющих сталей типа Х18Н10Т можно наносить металлические покрытия.

Омеднение выполняют в электролите следующего состава, г/л: 200 сернокислой меди; 50 серной кислоты; 5—7 фтористого натрия; плотность тока при этом составляет 3—5 А/дм2.

Никелирование осуществляют в обычных электролитах. Однако перед нанесением никеля требуется предварительная электрохимическая обработка поверхности нержавеющей стали в растворе хлористого никеля 250 г/л и соляной кислоты 8 % (объемн.), температура раствора 18—23 °С, плотность тока 3,2 А/дм2, аноды представляют никелевые пластины.

 

Источник:
Туфанов Д.Г. Коррозионная стойкость нержавеющих сталей, сплавов и чистых металлов.М.: Металлургия, 1990.

Железная окалина: процесс образования, методы удаления

На поверхности изделий, получаемых путем горячей прокатки, присутствует железная окалина. Ее возникновение обусловлено особенностями данного производственного процесса. Окалина значительно сокращает коррозионную стойкость материала и усложняет последующую обработку, поэтому необходимо полное ее удаление.

Железная окалинаЖелезная окалина

Процесс образования

Рассматриваемое покрытие представлено продуктом окисления металла. Его формирование связано с высокими температурами и происходит при обработке металла температурой либо давлением. Прокат в любом случае покрыт окисным слоем. Он образуется на открытом воздухе в сухих условиях в виде пленок. Изначально они невидимы даже под микроскопом. Под термическим воздействием толщина окисного слоя возрастает до видимых размеров. Железной окалиной называют толстое покрытие, формирующееся при термическом воздействии в условиях открытого воздуха.

Состав формирующих его окисных соединений и структура определяется многими факторами: маркой стали, температурой, условиями среды, режимом термообработки, наличием и количеством окислителей.

Они представлены гематитом, магнетитом, вюститом. Первые два оксида железа характеризуются большой плотностью и соединены промежуточной структурой. Вюстит наоборот представлен пористым соединением. От названных выше оксидов он отличается большей диффузинной проницаемостью. Вюстит имеет с ними непрочную связь.

Химические формулы железной окалиныХимические формулы железной окалины

Структура железной оксидной пленки определяется окружающими условиями и температурой. Так, в кислородосодержащей среде при нагреве более 570 °C и быстром охлаждении формируется трехслойное покрытие. Внешний слой представлен гематитом, следующий – магнетитом и внутренний – вюститом. Как было отмечено, первые два имеют кристаллическую структуру и прочно взаимосвязаны. Внутренний слой пористой структуры непрочно контактирует с ними. Это обуславливает малое электросопротивление железной оксидной пленки и легкое ее отслаивание.

Для образования трехслойной окалины на металле необходимо соблюдение трех названных условий: высокой концентрации кислорода, температуры в 570 °C, быстрого ее снижения. Иначе формируется двух- или однослойная железная окалина.

Так, при меньшем нагреве слой вюстита получается тонким. В случае формирования железной окалины при высокой концентрации пара либо окислов углерода при малом количестве кислорода и температурах более 1000 °C гематит восстанавливается, вследствие чего отсутствует в составе. Таким образом, соотношение слоев напрямую определяется температурой. Так, при 700 °C толщина вюстита составляет 100 мкм, в то время как для магнетита и гематита – 10 и 1 мкм соответственно. Другими словами, состав железной окалины в значительной степени зависит от температуры. Так, при 700-900 °C она представлена почти на 90% вюститом, примерно на 10% магнетитом и менее чем на 1% гематитом. При большем нагреве и избытке кислорода происходит замещение вюстита гематитом.

В любом случае формирование слоев железной окалины происходит последовательно в соответствии с их расположением. При охлаждении вюстит утрачивает устойчивость и распадается до железа и гематита. Ввиду этого пленка обретает гематит-магнетитовый состав. При восстановлении гематит и магнетит переходят в железо и воду. Следовательно, в результате получается прокатная окалина, состоящая из железа.

Возникновение окалины из искры при сваркеВозникновение окалины из искры при сварке

Выше приведены основные закономерности и факторы возникновения железной окалины. В промышленных условиях процесс ее образования весьма сложен и может происходить неоднократно.

Методы удаления

Удаление окалины осуществляют тремя способами. Механический метод включает следующие варианты: пропускание материала через ряд роликов, обработку дробью и прочими абразивными материалами. Первая технология основана на деформации металла скручиванием, изгибом, растяжением. Такой способ позволяет убрать большую часть окалины. Его считают черновой обработкой, и после очищают материал дополнительно. Во втором случае осуществляют механическое воздействие на железную окалину металлической дробью, песком и прочими абразивными материалами. Наконец, существуют механизированные технологии, связанные с применением микрорезцовых инструментов, проволочных щеток, наждачных лент и т. д.

Химические методы подразумевают обработку деталей в кислотах, солях, щелочах, называемую травлением. При этом большое значение имеет растворимость составляющих железную окалину соединений в кислотах. Так, вюстит легко подвержен ему, в отличие от магнетита. Гематит считают нерастворимым. Травление дифференцируют на химическое и электрохимическое. Далее рассмотрены некоторые варианты.

Травление серной кислотой связано с образованием водорода и проникновением его в металл, что ведет к водородной хрупкости, снижающей механические параметры и затрудняющей последующую обработку материала. Поэтому с целью сокращения наводораживания приходится долго выдерживать металл по завершении травления либо нагревать при сушке. К тому же во избежание разрушения металла кислотой после растворения железной окалины используют ингибиторы. Нужно отметить, что в нагретом растворе сталь разрушается быстрее.

Травление соляной кислотой идет по тем же закономерностям. Однако, в отличие от серной, для этого не требуется нагрев. Напротив, при температуре более 40°C выделяются хлороводородные соединения. В процессе травления формируются хлористые соли железа. В целом обработка соляной кислотой, в сравнении с серной, обеспечивает лучшую очистку при меньшем наводораживании стали.

Электрохимический способ существенно повышает скорость очистки металла от окалины и сокращает водородную хрупкость, а также расход раствора. Его дифференцируют на анодный, катодный и смешанный варианты.

Выбор способа очистки определяется многими факторами, среди которых состав изделия, целевые параметры, последующая обработка и т. д.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Удаление окалин с металла, устранение окалин: компания

Технология очистки

Технология удаления окалины представляет собой эффективный метод гидроструйной очистки с помощью струи воды, подаваемой под высоким давлением. Жидкость, выходящая через сопло малого диаметра, приобретает высокою кинетическую энергию, за счет чего сбивает окалину.

Процесс удаления окалин является полностью экологичным. Для очистки поверхности используется обычная вода без дополнительной обработки. Данная процедура осуществляется в самые сжатые сроки и не деформирует металлическую поверхность. За счет скорости струи и достаточного объема жидкости удается достигать требуемого результата очищения. Исходя из количества и величины частиц, которые следует удалить, устанавливается необходимое значение давления воды.

При работе с абразивными станками для удаления окалины с проката не выделяется газ, пар, шлаки и другие посторонние выделения. За счет высокой производительности устраняются лишние элементы без применения дополнительной химической обработки. Поверхность после обработки отличается хорошей адгезией при проведении лакокрасочных работ.

Оборудование для удаления окалин

Подача струи жидкости, обладающей высокой кинетической энергией осуществляется благодаря специальному оборудованию для удаления окалины с проката. Для достижения наилучшего результата при очистке различных поверхностей и материалов рекомендуется использовать насосы сверхвысокого давления Woma. Преимущества таких установок являются:

• качественное удаление окалин;
• компактный корпус;
• простое техническое обслуживание;
• удобство в эксплуатации;
• широкий рабочий диапазон;
• надежность и длительный срок службы;
• бесшумная работа;
• высокая производительность;
• экономичный расход электроэнергии.

Наличие большого количества различных насадок позволяет выполнять удаление окалины в труднодоступных местах. Компактные размеры оборудования обеспечивают великолепную маневренность. Благодаря высокому уровню пожаробезопасности удается обрабатывать изделия с горючими веществами.

Железная окалина. Химические свойства. Удаление окалины.

В силу ряда особенностей горячей прокатки и последующего охлаждения горячекатаных полос  их поверхность покрыта окалиной неодинаковой толщины и различного фазового состава. В результате взаимодействия железа с кислородом среды, в которой оно находится при сравнительно высоких температурах, образуются три устойчивых окисла: вюстит (FeO), магнетит  (Fe3O4) и гематит (Fe2O3). Слои, составляющие окалину, располагаются таким образом, что непосредственно к металлу примыкает слой окисла с наименьшим содержанием кислорода FeO, далее следует средний слой промежуточного состава  Fe3O4, наружный слой окалины состоит из высшего окисла  Fe2O3. Соотношение толщин слоев и одновременное существование всех трех окислов зависят от условий окисления поверхности железа.

Важная характеристика окалины – ее сплошность (пористость). Трещины  и поры возникают в слое окалины в период охлаждения металла в результате преобразований структуры. При образовании окалины, состоящей из вюстита, приращение объема составляет 1,76 , а из магнетита и гематита соответственно 2,1 и 2,4. Чем выше температура окисления, тем больше образуется различных окислов, обладающих разной пластичностью. Превращение их приводит к возникновению внутренних напряжений, вызывающих образование  трещин и пор. При травлении в соляной кислоте быстрее всего растворяется закись железа (вюстит), образующий наиболее пористый слой. Однако вюстит обычно содержится только в слое окалины, прилегающем к металлу. Наружный слой состоит из магнетита и гематита, которые растворяются незначительно. Наличие пор и трещин в окалине ускоряет травление. Раствор кислоты проникает через эти несплошности к поверхности металла и слою вюстита. Наряду с растворением вюстита происходит взаимодействие ионов водорода кислоты с металлическим железом. По мере растворения слоя вюстита уменьшается прочность сцепления окалины с основным металлом. Выделяющийся водород восстанавливает высшие окислы железа до закиси. Процесс растворения окалины, не  содержащей вюстита, протекает медленнее и связан с повышенными потерями металла.

Опыт работы травильных линий показывает, что продолжительность травления окалины в значительной степени связана  с  температурой смотки, которая влияет на толщину и структуру окалины. Обычно сокращение продолжительности травления с уменьшением температуры смотки связывают со снижением  степени превращения вюстита (FeO) в магнетит (Fe3O4), а также с уменьшением опасности появления гематита (Fe2O3) по кромкам полосы. При этом предполагается, что удаление окалины происходит путем растворения вюститной фазы вдоль  границы раздела сталь-окалина и подвода кислоты к границе металла. При взаимодействии кислоты с железом образуется водород, который способствует отслоению окалины. При высокой температуре смотки на границе раздела фаз окалина-сталь вюстит отсутствует, т.е. основным механизмом удаления окалины является на отслоение гематита и магнетита, а их растворение.

С целью выяснения механизма влияния температуры смотки на продолжительность травления изучали фазовый состав окалины. Образцы железной окалины были отобраны от головной, средней и хвостовой частей полос, температура смотки которых составляла 580-600, 640-680 и 700-730 0С. Изучение окалины проводили комплексными методами. На начальных этапах использовали химические методы селективного изолирования фаз. Общий состав оксидных фаз изолировали методом галогенирования в атмосфере сухого газообразного хлора при температуре 3500С. После удаления хлора путем вымораживания смесь оксидов и хлоридов нагревали до температуры возгонки. После возгонки FeCl2 оксидные фазы переводили в раствор путем сплавления с персульфатом калия и количественный анализ по составляющим элементам вели химическим и атомно-абсорбционными методами на спектрофотометре.

Таблица 1 – Фазовый состав железной окалины при различной температуре смотки полос

Температура смотки, 0С

Фазовые составляющие *,  %

SiO2

Al2O3

Fe3O4

FeO

Fe2O3

Fe (метал.)

580-600

1,29

2,31

1,51

0,69

0,71

0,93

52,62

47,13

52,65

0,73

1,23

45,40

49,12

43,63

640-680

1,56

2,49

1,83

1,31

1,14

1,17

63,96

53,04

53,53

7,21

11,36

33,17

36,12

32,11

700-730

2,30

1,85

1,60

1,02

1,02

1,00

61,88

47,17

33,05

8,26

43,14

45,95

10,58

8,31

16,07

17,31

18,40

* —  Верхнее, среднее и нижнее значения содержания фаз в каждом диапазоне температур соответствуют головной, средней и хвостовой частям полосы при горячей прокатке

Результаты исследований показывают, что количество оксидов кремния, алюминия и магния существенно не изменяются в окалине, полученной при различных температурах смотки.

Дополнительно для определения оксидных фаз железа в окалине использовали метод ядерной гамма-резонансной спектроскопии (ЯГР). Спектры снимали с образцов окалины без дополнительных физико-химических обработок. Было установлено, что характер кривых спектров, снятых с образцов окалины, полученной при низкой и высокой  температурах смотки, в основном аналогичен. Основной фазой в окалине на металле головной части полосы при низкой температуре смотки является гематит. При высокой температуре смотки в окалине головной части полосы также основной фазой является гематит с небольшой примесью вюстита и гематита (последний, очевидно, появляется за счет дополнительного окалинообразования при охлаждении рулонов с повышенной температурой). Окалина средней части полосы при низкой температуре смотки характеризуется преимущественно магнетитной фазой. Для хвостовых частей полос при низкой и высокой температурах смотки соотношение фаз магнетита и вюстита в окалине колеблется от 1:1 до 1:0,7. Общее количество оксидных фаз в окалине при увеличении температуры смотки с 580-620 до 700-7300С возрастает в среднем в 1,5 раза. Наибольшее количество железа в окалине (43-49%) приходится на полосу с температурой смотки 580-6200С. С увеличением температуры смотки до 700-7300С количество металлического железа в окалине снижается до 16-18%. Количественное соотношение оксидных фаз и металлического железа в окалине, взятой с краев полосы при низкой и высокой температурах смотки, такое же, что и в средней части полосы.

Основной фазой в металлической окалине стали 08Ю может быть не только магнетит, но и вюстит, как при низкой так и при высокой температуре смотки. Гематит в окалине присутствует лишь при высокой температуре смотки. С понижением температуры  смотки общее количество труднорастворимых оксидов (гематита и магнетита) изменяется незначительно, а количество легкорастворимой закиси железа (вюстит) уменьшается. Следовательно, изменение содержания оксидных фаз и их соотношения не могут объяснить увеличение скорости травления металла с понижением температуры смотки. Фактором, объясняющим повышение интенсивности травления металла, является содержание металлического железа, которое увеличивается обратно пропорционально температуре смотки полосы.

Некоторые дефекты металла, связанные с окалиной (фото, описание и как бороться):

Плюс к этому Краткий отчет исследования выкатываемости окалины (Трансформация дефекта «Окалина»)

А также важно понимать для чего необходим ингибитор травления.

В завершение короткое прикольное видео Непрерывно-травильный агрегат для удаления окалины:

Рекомендуем ознакомиться со статьями:
  1. Окалина железа на горячекатаной полосе металла
  2. Механизм образования железной окалины на поверхности стали
  3. Травление металла
  4. Влияние температуры и условий охлаждения на формирование железной окалины
  5. Окалина, дефекты травления металла и зачем нужен ингибитор

Прокатная окалина — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 мая 2016; проверки требуют 5 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 мая 2016; проверки требуют 5 правок.

Прокатная окалина, часто просто окалина — это чешуйчатые частицы различной толщины, образовавшиеся на поверхности горячекатанной стали и состоящие из окислов II- и III-валентного железа — вюстита, гематита и магнетита. По химическому составу окалина близка к чистому магнетиту (65-72 % Fe), а по гранулометрическому составу представлена в основном фракцией менее 0,2 мм. Выход прокатной окалины составляет в среднем 1 — 3 % от массы готового проката.

Рулон горячекатанной стали

Окалина формируется на внешней поверхности плит, листов и профилей, при их производстве путём горячей прокатки. Окалина состоит из окислов железа и имеет синевато-чёрный цвет. Она, как правило, менее 1 мм толщиной и изначально сильно сцеплена со стальной поверхностью и защищает её от атмосферной коррозии.

Пока корка окалины цела, она является коррозионно-стойким покрытием, однако, при деформации металла во время дальнейшей обработки, транспортировки или хранения окалина растрескивается и частично осыпается. Так как оксид всегда имеет более положительный электродный потенциал по сравнению с исходным металлом, они являются гальванической парой, и при попадании в трещину влаги начинается коррозия контактного типа, которая имеет скорость, превышающей обычную атмосферную коррозию в несколько раз.[1]

Для дальнейшего использования металла окалина должна быть удалена, для чего используются газопламенная обработка, травление или абразивная очистка.[2] В настоящее время большинство металлургических заводов могут поставлять свою продукцию без прокатной окалины, с металлическим покрытием или заводским грунтом, поверх которого допускается проведение сварочных работ.

Окалину используют как сырьё для производства железного порошка в процессах восстановления в кипящем слое, а также в несмешивающихся слоях шихты (процесс Хоганеса), а также в конвертерном процессе.

Основные причины необходимости удаления прокатной окалины[править | править код]

  • Окалина имеет положительный потенциал в водных растворах по сравнению с потенциалом железа из-за чего во влажной атмосфере, солёной воде наблюдается интенсивная коррозия стали в местах разрушения прокатной окалины из-за разности потенциалов окалины и стали.
  • Окалина очень хрупка и не может являться надёжной защитой металла, — в процессе эксплуатации стали с неудалённой прокатной окалиной происходят сколы окалины.
  • Окалина — статья из Большой советской энциклопедии. 
  • Акимов Г. В., Основы учения о коррозии и защите металлов, М., 1946
  • Томашов Н. Д., Теория коррозии и защиты металлов, М., 1959

Снятие окалины и очистка поверхности

    Обезжиривание поверхности металла производится обработкой ее органическими растворителями или щелочными растворами, а также электрохимическими методами. Снятие ржавчины, окалины и других загрязнений производится механическим, химическим или электрохимическим способом. Хороши результаты дает пескоструйная очистка поверхности металла. Небольшие поверхности можно очищать металлическими щетками, на шлифовальных станках и т. п. При механической очистке поверхность изделий делается шероховатой. Покрытия, наносимые напылением или гальваническим методом, сцепляются с шероховатой поверхностью металла лучше, чем с гладкой. Если же изделие после покрытия должно иметь глад ую поверхность, то применяется предварительная шлифовка, а в некоторых случаях и полировка покрываемой поверхности. [c.158]
    Снятие окалины и пригара в расплавленных щелочах со стальных и чугунных деталей производят следующим образом. Стальное и чугунное литье, детали после цементации и закалки и прочих термических процессов, связанных с образованием окислов, монтируют на подвесках из углеродистой стали. Сечение подвесок подбирают из расчета, что на каждый I мм сечения должна приходиться сила тока не более 1 а, а следовательно, общее сечение подвески для деталей средних размеров должно быть не менее 50—100 мм . Смонтированные детали подвешивают на штангу, расположенную над зеркалом ванны, на 5—10 мин для прогревания деталей до 100—150° С и для удаления влаги с их поверхности. После прогревания детали погружают в ванну для очистки, содержащую расплавленные щелочи в следующих соотношениях 70—80 вес. % каустической соды и 30—20 вес. % едкого технического калия. [c.77]

    Снятие окалины и очистка поверхности [c.95]

    Лучшим способом борьбы с окалиной и обезуглероживанием при операциях термической обработки является применение печей с защитными атмосферами. Однако подавляющее большинство печей, применяемых при. термической обработке металлов, пока не имеют защитных атмосфер и при нагреве дают окалину, которую приходится удалять. Для ленты и листового материала, проходящих холодный прокат и холодную штамповку, а также для прутков, проволоки и труб, предназначенных к волочению и калибровке, снятие окалины обязательно. Окалина резко затрудняет процесс пластической деформации металла, увеличивает расход валков, фильеров и дает неудовлетворительную поверхность металлу. Даже в том случае, если детали в дальнейшем проходят механическую обработку, рациональна предварительная очистка их от окалины. Вследствие высокой твердости окалины ее удаление в процессе резания вызывает большой расход режущего инструмента, снижает производительность станков и сильно засоряет шлифовальные круги. Снятие окалины часто позволяет вскрыть поверхностные пороки металла — трещины, волосовины, плены, закаты и т. п., что весьма валОчистка деталей от окалины возлагается на термический цех и представляет собой весьма трудоемкую и тяжелую в отношении условий труда работу. [c.307]


    ТРАВЛЁННЕ — химическая и электрохимическая обработка поверхиости твердых материалов. Используется для удаления загрязнений, окислов (в частности, ржавчины), окалины, для выявления структуры материала (металла, минерала) или придания поверхности желаемой микрогеометрии, для снятия нарушенного мех. обработкой поверхностного слоя и получения структурно и химически однородной поверхностп при произ-ве полупроводниковых материалов, для придания матового вида стеклу и др. Часто применяется перед нанесением защитных покрытий, эмалированием, лужением и пайкой. Химическое Т. стали, меди, цинка и магния осуществляют в водных растворах серной, соляной или азотной кислоты стекла — в плавиковой кислоте алюминия — в водных растворах едких щелочей нержавеющих и жаростойких сталей, титана — в щелочных расплавах. Из-за неоднородности поверхиости (наличия пор, трещин и т. п.) химическое Т. металлов сопровождается действием гальванических микроэлементов. Электрохимическое Т. проводят в тех же средах, а также в растворах солен с применением катодного, анодного или переменного тока. При Т. на поверхности происходят хим. взаимодействие окисной пленки или материала основы с раствором или расплавом электрохим. растворение металла (на анодных участках микроэлементов или нри анодном травлении) электрохим. выделение водорода (на катодных участках микроэлементов или при катодном травлении) электрохим. выделение кислорода (при анодном травлении). Хим. очистке поверхности способствуют разрыхление и отрыв окалины под мех. воздействием [c.582]

    Для очистки поверхности тонкостенных деталей, а также деталей сложной конфигурации и небольшого размера целесообразно применять гидропескоструйный или, еще лучше, химические способы. Гидропескоструйный способ обеспечивает достаточно высокое качество очистки поверхности. Во избежание почти немедленного появления на очищенной поверхности налета вторичной ржавчины необходимо вводить в суспензию из песка и воды 0,5—1% раствор нитрита натрия или промывать детали этим раствором сразу же после обработки.. Для очистки деталей из латуни, алюминия и их сплавов, а также для снятия ржавчины со стальных деталей может быть применено ручное крацевание проволочными щетками оно неприменимо, однако, для удаления плотного слоя окалины. « [c.208]

    Последующее кислотное травление в 15%-ной H,SO.i при 65—70° С играет вспомогательную роль здесь происходит дотравливание окалины и очистка поверхности от следов расплава. Остатки окалины после щелочной ванны имеют совершенно иную природу. Это уже не двуокись титана, а соответстзующий титанах. Именно это обеспечивает быстрое снятие следов окалины в растворе серной кислоты. Сама же двуокись титана в серной кислоте растворяется очень медленно — выдержка окисленных образцов в кислотном растворе без предварительной обработки в щелочи даже в течение 6 час. не дает эффекта. [c.146]

    Большое значение имеют мероприятия по борьбе с коррозией металлов в кислотной среде. Большинство металлов растворяется в кислотах. Этот процесс может быть значительно замедлен, стоит только добавить к кислотам так называемые присадки, или ингибиторы (замедлители) коррозии. Многие металлы в присутствии ингибиторов практически не подвергаются коррозии в кислотной среде. Предполагают, что ингибиторы образуют на поверхности металла защитную пленку. Их положительное действие состоит еще и в том, что в их присутствии кислота, не разрушая металл, растворяет окиси, гидроокиси и другие соединения, образующиеся на поверхности. На этом основано применение кислот, заправленных ингибиторами, для очистки от накипи паровых котлов, снятия ржавчины и окалины с поверхности металла. [c.195]

    Ручной и механизированный (пневматический или электрический) инструмент широко применяют во всех отраслях народного

Катодное удаление окалины — Справочник химика 21


    Возникновение локальных пар окалина—металл имеет большое практическое значение для коррозионной стойкости стальных конструкций не только в морской воде. Так, понтоны сплоточных машин, изготовленные пз листов низкоуглеродистой стали без предварительного снятия окалины, за работу в течение двух навигаций на Северной Двине подверглись значительной местной коррозии с глубиной отдельных язв до 1,5—2 мм. Причиной этого быстрого коррозионного разрушения металла понтонов, как установил М. Д. Мещеряков, явилось наличие на стали окалины. В результате повреждения окалины в отдельных местах возникли гальванические пары, в которых роль катода играла окалина, а роль анодов — отдельные свободные от окалины участки металла. Большая катодная поверхность (покрытая окалиной) и сравнительно малая поверхность анодов (участков, свободных от окалины) и приводит к усиленному анодному растворению металла в местах с удаленной или поврежденной окалиной. [c.400]

    Из химических методов удаления окалины представляет интерес обработка изделий при помощи гидрида натрия. Кроме того, весьма перспективны электрохимические методы очистки металлов. Последние могут быть осуществлены в двух вариантах в травильных растворах или в расплавленном едком натре. Электрохимический способ травления позволяет значительно сократить время обработки и уменьшить расход кислоты. В процессах электрохимического травления используют как катодную, так и анодную поляризацию. Состав электролитов и режимы работы электрохимического травления в растворах приведены в табл. 19. [c.64]

    При наличии большой катодной покрытой окалиной поверхности и сравнительно малой свободной от окалины поверхности анодных участков происходит усиленное растворение металла в местах с удаленной или поврежденной окалиной. [c.187]

    Сходным образом небольшие количества оксида мышьяка ускоряют коррозию стали в кислотах (например, в НаЗО ), возможно, благодаря формированию арсенидов. А будучи добавленным в больших количествах ( 0,05 % в 72 % НаЗО , оксид мышьяка становится эффективным ингибитором коррозии, вероятно, вследствие того, что элементарный мышьяк, имеющий высокое водородное перенапряжение, осаждается на катодных участках. Соли олова имеют аналогичный ингибирующий эффект и используются для защиты стали от разрушения травильными кислотами при удалении окалины. — Примеч. авт. [c.58]


    Наиболее эффективным способом травления в случае образования больших, плотных и клейких окалин является использование расплавленных солей (едкого натра или гидрида натрия ЫаН). Химическое воздействие на окалину расплавленной соли сочетается с нарушением сплошности окалины за счет различия коэффициентов линейного расширения окалины и основного металла под действием тепла при погружении изделия в ванну с расплавленным раствором. Этот метод травления находит все более широкое применение и дает наибольший эффект при сведении процессов удаления окалины и термообработки в одну операцию. Однако при этом требуются специальное оборудование и квалифицированные рабочие. Процесс является дорогостоящим и опасным. Кроме того, его нельзя применять в том случае, если воздействие высоких температур неблагоприятно скажется на механических свойствах металла, с которого удаляется окалина. Что касается химической очистки, то электрохимическое воздействие (анодная либо катодная поляризация) или использование ультразвука может улучшить действие травления. [c.60]

    Для устранения неравномерности травления окислов и уменьшения наводороживания в травильный раствор вводят небольшое количество солей олова или свинца, а в качестве анодов используют пластины из кремнистого чугуна и пластины из олова или свинца. Олово или свинец осаждаются на участках поверхности, очищенных от окалины. н вследствие высокого перенапряжения иа ннх выделяется значительно меиьшее количество водорода. Для катодного травления известно несколько составов (табл. 27). После травления в растворе Ко 4 для полного удаления окалины поверхность обрабатывают на аноде в 40—50 % -ной Нз 04 при тон же температуре. [c.81]

    Травление стали в растворах кислот без наложения катодной или анодной поляризации от внешнего источника тока является давно известным и широко применяющимся по сей день

Отправить ответ

avatar
  Подписаться  
Уведомление о